skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Importance of Anisotropic Viscosity in Numerical Models, for Olivine Textures in Shear and Subduction Deformations
Olivine lattice preferred orientation (LPO), or texture, forms in relation to deformation mechanisms such as dislocation creep and can be observed in the upper mantle as seismic anisotropy. Olivine is also mechanically anisotropic, meaning that it responds to stresses differently depending on the direction of the stress. Understanding the interplay between anisotropic viscosity (AV) and LPO, and their role in deformation, is necessary for relating seismic anisotropy to mantle flow patterns. In this study, we employ three methods to predict olivine texture (D-Rex, MDM, and MDM+AV) in a shear box model and a subduction model. D-Rex and MDM are two representative texture development methods that have been compared before, and our results are in line with previous studies showing that textures computed by D-Rex develop faster and are stronger and more point-like than textures calculated with MDM. MDM+AV uses the same isotropic mantle stresses and particle paths as D-Rex and MDM but includes the effect of AV for texture predictions. MDM+AV predicts a texture similar to MDM with a distinct girdle-like orientation for simple shear deformation or at low strain in the subduction model. At larger strains, MDM+AV’s textures are more point-like and stronger compared to the other two methods. The effective viscosity for MDM+AV drops by up to 60% in a shear box model and can be either strengthened or weakened relative to isotropic viscosity for different regions of the subduction model experiencing different patterns of deformation. Our results emphasize the significant role of AV in olivine texture development, which could substantially affect geodynamic processes in the upper mantle.  more » « less
Award ID(s):
1925677
PAR ID:
10534231
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Publisher / Repository:
Open Journal Assistance
Date Published:
Journal Name:
Tektonika
Volume:
2
Issue:
1
ISSN:
2976-548X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seismic anisotropy arises in the upper mantle due to the alignment of olivine crystal lattices and is often used to interpret mantle flow direction. Experiments on the evolution of olivine crystal‐preferred orientation (CPO) have found that the texture that develops is dependent on many factors, including water content, differential stress, preexisting CPO, and deformation kinematics. To evaluate the role of these factors in naturally deformed samples, we present microstructural transects across three shear zones in the Josephine Peridotite. Samples from these shear zones exhibit a mixture of A‐type textures, which have been associated with dry conditions and primary activation of the olivine [100](010) slip system, and of E‐type textures, which have been associated with wetter conditions and primary activation of the [100](001) slip system. CPOs with characteristics of both A‐type and E‐type textures are also present. CPO type does not evolve systematically as a function of either strain or water content. We used a micromechanical model to evaluate the roles of preexisting texture and kinematics on olivine CPO evolution. We find that the preexisting texture controls CPO evolution at strains up to 5 during simple shear. Kinematics involving a combination of simple shear and pure shear can explain the olivine CPOs at higher strain. Hence, preexisting CPOs and deformation kinematics should be considered in the interpretation of CPOs measured in naturally deformed rocks and of large‐scale patterns in upper‐mantle seismic anisotropy. 
    more » « less
  2. Abstract Antigorite is a hydrous sheet silicate with strongly anisotropic seismic and rheological properties. Hydrous minerals such as antigorite have been invoked to explain numerous geologic observations within subduction zones including intermediate‐depth earthquakes, arc volcanism, the persistent weakness of the subduction interface, trench‐parallelSwave splitting, and episodic tremor and slip. To understand how the presence of antigorite‐bearing rocks affects observations of seismic anisotropy, three mylonites from the Kohistan palaeo‐island arc in Pakistan were analysed using electron backscatter diffraction. A fourth sample, which displayed optical evidence for crystallographically controlled replacements of olivine, was also investigated using electron backscatter diffraction to identify potential topotactic relationships. The resulting data were used to model the bulk seismic properties of antigorite‐rich rocks. The mylonitic samples exhibit incredibly strong bulk anisotropy (10–20% for the antigorite + olivine). Within the nominally undeformed protomylonite, two topotactic relationships were observed: (1) (010)ant//(100)ol with [100]ant//[001]ol and (2) (010)ant//(100)ol with [100]ant//[010]ol. However, the strength of a texture formed by topotactic replacement is markedly weaker than the strength of the textures observed in mylonitic samples. Since antigorite is thought to be rheologically weak, we hypothesise that microstructures formed from topotactic reactions will be progressively overprinted as deformation is localised in regions with greater percentages of serpentine. Regions of highly sheared serpentine, therefore, have the potential to strongly influence seismic wave speeds in subduction settings. The presence of deformed antigorite in a dipping structure is one explanation for observations of both the magnitude and splitting pattern of seismic waves in subduction zones. 
    more » « less
  3. Abstract Seismic anisotropy provides essential information for characterizing the orientation of deformation and flow in the crust and mantle. The isotropic structure of the Antarctic crust and upper mantle has been determined by previous studies, but the azimuthal anisotropy structure has only been constrained by mantle core phase (SKS) splitting observations. This study determines the azimuthal anisotropic structure of the crust and mantle beneath the central and West Antarctica based on 8—55 s Rayleigh wave phase velocities from ambient noise cross‐correlation. An anisotropic Rayleigh wave phase velocity map was created using a ray—based tomography method. These data are inverted using a Bayesian Monte Carlo method to obtain an azimuthal anisotropy model with uncertainties. The azimuthal anisotropy structure in most of the study region can be fit by a two‐layer structure, with one layer at depths of 0–15 km in the shallow crust and the other layer in the uppermost mantle. The azimuthal anisotropic layer in the shallow crust of West Antarctica, where it coincides with strong positive radial anisotropy quantified by the previous study, shows a fast direction that is subparallel to the inferred extension direction of the West Antarctic Rift System. Fast directions of upper mantle azimuthal anisotropy generally align with teleseismic shear wave splitting fast directions, suggesting a thin lithosphere or similar lithosphere‐asthenosphere deformation. However, inconsistencies in this exist in Marie Byrd Land, indicating differing ancient deformation patterns in the shallow mantle lithosphere sampled by the surface waves and deformation in the deeper mantle and asthenosphere sampled more strongly by splitting measurements. 
    more » « less
  4. The D″ region of the lower mantle, which lies just above the core–mantle boundary, is distinct from the bulk of the lower mantle in that it exhibits complex seismic heterogeneity and seismic anisotropy. Seismic anisotropy in this region is likely to be largely due to the deformation-induced texture (crystallographic preferred orientation) development of the constituent mineral phases. Thus, seismic anisotropy can provide a marker for deformation processes occurring in this dynamic region of the Earth. Post-perovskite-structured (Mg,Fe)SiO3 is believed to be the dominant mineral phase in many regions of the D”. As such, understanding deformation mechanisms and texture development in post-perovskite is important for the interpretation of observed seismic anisotropy. Here, we report on high-pressure diamond anvil cell deformation experiments on NaMgF3 neighborite (perovskite structure) and post-perovskite. During deformation, neighborite develops a 100 texture, as has been previously observed, both in NaMgF3 and MgSiO3 perovskite. Upon transformation to the post-perovskite phase, an initial texture of {130} at high angles to compression is observed, indicating that the {100} planes of perovskite become the ~{130} planes of post-perovskite. Further compression results in the development of a shoulder towards (001) in the inverse pole figure. Plasticity modeling using the elasto-viscoplastic self-consistent code shows this texture evolution to be most consistent with deformation on (001)[100] with some contribution of glide on (100)[010] and (001)<110> in NaMgF3 post-perovskite. The transformation and deformation mechanisms observed in this study in the NaMgF3 system are consistent with the behavior generally observed in other perovskite–post-perovskite systems, including the MgSiO3 system. This shows that NaMgF3 is a good analog for the mantle bridgmanite and MgSiO3 post-perovskite. 
    more » « less
  5. SUMMARY The Earth's mantle transition zone (MTZ) plays a key role in the thermal and compositional interactions between the upper and lower mantle. Seismic anisotropy provides useful information about mantle deformation and dynamics across the MTZ. However, seismic anisotropy in the MTZ is difficult to constrain from surface wave or shear wave splitting measurements. Here, we investigate the sensitivity to anisotropy of a body wave method, SS precursors, through 3-D synthetic modelling and apply it to real data. Our study shows that the SS precursors can distinguish the anisotropy originating from three depths: shallow upper mantle (80–220 km), deep upper mantle above 410 km, and MTZ (410–660 km). Synthetic resolution tests indicate that SS precursors can resolve $$\ge $$3 per cent azimuthal anisotropy where data have an average signal-to-noise ratio (SNR = 7) and sufficient azimuthal coverage. To investigate regional sensitivity, we apply the stacking and inversion methods to two densely sampled areas: the Japan subduction zone and a central Pacific region around the Hawaiian hotspot. We find evidence for significant VS anisotropy (15.3 ± 9.2 per cent) with a trench-perpendicular fast direction (93° ± 5°) in the MTZ near the Japan subduction zone. We attribute the azimuthal anisotropy to the grain-scale shape-preferred orientation of basaltic materials induced by the shear deformation within the subducting slab beneath NE China. In the central Pacific study region, there is a non-detection of MTZ anisotropy, although modelling suggests the data coverage should allow us to resolve at least 3 per cent anisotropy. Therefore, the Hawaiian mantle plume has not produced detectable azimuthal anisotropy in the MTZ. 
    more » « less