skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dinophysis, a highly specialized mixoplanktonic protist
SeveralDinophysisspecies produce lipophilic toxins (diarrhetic shellfish poisoning, DSP and pectenotoxins PTX) which are transferred through the food web. Even at low cell densities (< 103cell L-1), they can cause human illness and shellfish harvesting bans; toxins released into the water may kill early life stages of marine organisms.Dinophysisspecies are mixotrophs: they combine phototrophy (by means of kleptoplastids stolen from their prey) with highly selective phagotrophy on the ciliateMesodinium, also a mixotroph which requires cryptophyte prey of theTeleaulax/Geminigeraclade. Life cycle strategies, biological interactions and plastid acquisition and functioning inDinophysisspecies make them exemplars of resilient holoplanktonic mixoplankters and of ongoing speciation and plastidial evolution. Nevertheless, 17 years after the first successful culture was established, the difficulties in isolating and establishing cultures with local ciliate prey, the lack of robust molecular markers for species discrimination, and the patchy distribution of low-density populations in thin layers, hinder physiological experiments to obtain biological measurements of their populations and slow down potential advances with next-generation technologies. The Omic’s age inDinophysisresearch has only just started, but increased efforts need to be invested in systematic studies of plastidic diversity and culture establishment of ciliate and cryptophyte co-occurring withDinophysisin the same planktonic assemblages.  more » « less
Award ID(s):
2140395
PAR ID:
10534316
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Protistology
Volume:
1
ISSN:
2813-849X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dolan, John (Ed.)
    Abstract Species of the Dinophysis acuminata complex are the main cause of diarrhetic shellfish poisoning worldwide. These mixotrophs perform photosynthesis with plastids stolen from specific ciliate prey. Current transport models forecast advection of established populations, but modelling bloom development and maintenance also needs to consider the prey (Mesodinium spp.) of Dinophysis. Predator and prey have distinct niches, and Dinophysis bloom success relies on matching prey populations in time and place. During autumn 2019, red tides of Mesodinium rubrum in Reloncaví Fjord, Chile, were not followed by Dinophysis growth. The dynamics of Mesodinium–Dinophysis encounters during this and additional multiscale cases elsewhere are examined. Analogies with some classic predator—prey models (match–mismatch hypothesis; Lasker’s stable ocean hypothesis) are explored. Preceding dense populations of Mesodinium do not guarantee Dinophysis blooms if spatial co-occurrence is not accompanied by water column structure, which leads to thin layer formation, as in Lasker’s stable ocean hypothesis or if the predator growth season is over. Tracking the frequency of vacuolate Dinophysis cells, irrefutable signal of prey acquisition, with advanced in situ fluid-imaging instruments, is envisaged as a next-generation tool to predict rising Dinophysis populations. 
    more » « less
  2. Abstract As chloroplast‐stealing or “kleptoplastidic” lineages become more reliant on stolen machinery, they also tend to become more specialized on the prey from which they acquire this machinery. For example, the ciliateMesodinium rubrumobtains > 95% of its carbon from photosynthesis, and specializes on plastids from theTeleaulaxclade of cryptophytes. However,M. rubrumis sometimes observed in nature containing plastids from other cryptophyte species. Here, we report on substantial ingestion of the blue‐green cryptophyteHemiselmis pacificabyM. rubrum, leading to organelle retention and transient increases inM. rubrum's growth rate. However, microscopy data suggest thatH. pacificaorganelles do not experience the same rearrangement and integration asTeleaulax amphioxeia's. We measuredM. rubrum's functional response, quantified the magnitude and duration of growth benefits, and estimated kleptoplastid photosynthetic rates. Our results suggest that a lack of discrimination betweenH. pacificaand the preferred preyT. amphioxeia(perhaps due to similarities in cryptophyte size and swimming behavior) may result inH. pacificaingestion Thus, while blue‐green cryptophytes may represent a negligible prey source in natural environments, they may helpM. rubrumsurvive whenTeleaulaxare unavailable. Furthermore, these results represent a useful tool for manipulatingM. rubrum's cell biology and photophysiology. 
    more » « less
  3. Abstract Much of the evolutionary ecology of toxic algal blooms (TABs) remains unclear, including the role of algal toxins in the adaptive ‘strategies’ of TAB‐forming species. Most eukaryotic TABs are caused by mixotrophs that augment autotrophy with organic nutrient sources, including competing algae (intraguild predation). We leverage the standing diversity of TABs formed by the toxic, invasive mixotrophPrymnesium parvumto identify cell‐level behaviours involved in toxin‐assisted predation using direct observations as well as comparisons between genetically distinct low‐ and high‐toxicity isolates. Our results suggest thatP. parvumtoxins are primarily delivered at close range and promote subsequent prey capture/consumption. Surprisingly, we findoppositechemotactic preferences for organic (prey‐derived) and inorganic nutrients between differentially toxic isolates, respectively, suggesting behavioural integration of toxicity and phagotrophy. Variation in toxicity may, therefore, reflect broader phenotypic integration of key traits that ultimately contribute to the remarkable flexibility, diversity, and success of invasive populations. 
    more » « less
  4. Harmful algal blooms (HABs) are a reoccurring threat to subsistence and recreational shellfish harvest in Southeast Alaska. Recent Tribally led monitoring programs have enhanced understanding of the environmental drivers and toxicokinetics of shellfish toxins in the region; however, there is considerable variability in shellfish toxins in some species, which cannot be easily explained by seasonal bloom dynamics. Persistent concentrations of paralytic shellfish toxins (PSTs) in homogenized butter clam samples (n > 6, Saxidomus gigantea) have been observed in several communities, and relatively large spikes in concentrations are sometimes seen without Alexandrium observations or increased toxin concentrations in other species. In order to investigate potential sources of variability in PST concentrations from this subsistence species, we assessed individual concentrations of PSTs across a size gradient of butter clams during a period of relatively stable PST concentrations. We found that increasing concentrations of PSTs were significantly associated with larger clams using a log-linear model. We then simulated six clams randomly sampled from three size distributions, and we determined large clams had an outsized probability of contributing a significant proportion of the total toxicity in a six-clam homogenized sample. While our results were obtained during a period of low HAB activity and cannot be extrapolated to periods of intoxication or rapid detoxification, they have significant ramifications for both monitoring programs as well as subsistence and recreational harvesters. 
    more » « less
  5. Abstract Gelatinous zooplankton play a crucial role in pelagic marine food webs, however, due to methodological challenges and persistent misconceptions of their importance, the trophic role of gelatinous zooplankton remains poorly investigated. This is particularly true for small gelatinous zooplankton including the marine pelagic tunicate,Dolioletta gegenbauri.D. gegenbauriand other doliolid species occur persistently on wide subtropical shelves where they often produce massive blooms in association with shelf upwelling conditions. As efficient filter feeders and prodigious producers of relatively low‐density organic‐rich aggregates, doliolids are understood to contribute significantly to shelf production, pelagic ecology, and pelagic–benthic coupling. Utilizing molecular gut content analysis and stable isotope analysis approaches, the trophic interactions of doliolids were explored during bloom and non‐bloom conditions on the South Atlantic Bight continental shelf in the Western North Atlantic. Based on molecular gut content analysis, relative ingestion selectivity varied withD. gegenbaurilife stage. At all life stages, doliolids ingested a wide range of prey types and sizes, but exhibited selectivity for larger prey types including diatoms, ciliates, and metazoans. Experimental growth studies confirmed that metazoan prey were ingested, but indicated that they were not digested and assimilated. Stable isotopic composition (δ13C and δ15N) of wild‐caught doliolids, during bloom and non‐bloom conditions, were most consistent with a detrital‐supplemented diet. These observations suggest that the feeding ecology ofD. gegenbauriis more complex than previously reported, and have strong and unusual linkages to the microbial food web. 
    more » « less