The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become ∼ 10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of ∼ 400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.
more »
« less
An Ocean of Particles Characterization of Particulate Trace Elements by the GEOTRACES Program
The GEOTRACES program has greatly expanded measurements of trace elements, which serve as key nutrients, harmful contaminants, and tracers of ocean processes and past conditions. Many elements tend to associate with particulate matter, and GEOTRACES has been particularly valuable for growing our understanding of this fraction. Focusing on the micronutrient iron as an example, GEOTRACES data demonstrate that the majority of iron in the ocean is particulate. Chemically labile particulate iron, likely available for biological use, is also often more abundant than dissolved forms, particularly near continents and in the deep sea. This highlights the need to consider the particulate fraction in conceptual and numeric ocean models. Direct comparisons of particle-sampling methods highlight both the abundance of small particles (<0.45–0.8 μm), whose biogeochemical roles are still poorly known, and the difficulty in consistently capturing large, faster-sinking particles. In situ pumps with 0.8 μm filters often capture less small particulate iron than bottle-collected samples filtered onto 0.45 μm filters, but they can also capture more material near some sources. GEOTRACES datasets contain nearly sevenfold more dissolved than particulate iron measurements, and ongoing efforts to pair these measurements are needed in order to fully understand the cycles of iron and other important elements.
more »
« less
- PAR ID:
- 10534321
- Publisher / Repository:
- The Oceanography Society
- Date Published:
- Journal Name:
- Oceanography
- Volume:
- 37
- Issue:
- 2
- ISSN:
- 1042-8275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding particle cycling processes in the ocean is critical for predicting the response of the biological carbon pump to external perturbations. Here, measurements of particulate organic carbon (POC) concentration in two size fractions (1–51 and >51 μm) from GEOTRACES Pacific meridional transect GP15 are combined with a POC cycling model to estimate rates of POC production, (dis)aggregation, sinking, remineralization, and vertical transport mediated by migrating zooplankton, in the euphotic zone (EZ) and upper mesopelagic zone (UMZ) of distinct environments. We find coherent variations in POC cycling parameters and fluxes throughout the transect. Thus, the settling speed of POC in the >51 μm fraction increased with depth in the UMZ, presumably due to higher particle densities at depth. The settling flux of total POC (>1 μm) out of the EZ was positively correlated with primary production integrated over the EZ; the highest export occurred in the subarctic gyre while the lowest occurred in the subtropical gyres. The ratio of POC settling flux to integrated primary production was low (<5%) along GP15, which suggests an efficient recycling of POC in the EZ in all trophic regimes. Specific rates of POC remineralization did not show clear variations with temperature or dissolved oxygen concentration, that is, POC recycling was apparently controlled by other factors such as microbial colonization and substrate lability. Particle cohesiveness, as approximated by the second‐order rate constant for particle aggregation, was negatively correlated with trophic regime: particles appeared more cohesive in low‐productivity regions than in high‐productivity regions.more » « less
-
Abstract The cycling of marine particulate matter is critical for sequestering carbon in the deep ocean and in marine sediments. Biogenic minerals such as calcium carbonate (CaCO3) and opal add density to more buoyant organic material, facilitating particle sinking and export. Here, we compile and analyze a global data set of particulate organic carbon (POC), particulate inorganic carbon (PIC, or CaCO3), and biogenic silica (bSi, or opal) concentrations collected using large volume pumps (LVPs). We analyze the distribution of all three biogenic phases in the small (1–53 μm) and large (>53 μm) size classes. Over the entire water column 76% of POC exists in the small size fraction. Similarly, the small size class contains 82% of PIC, indicating the importance of small‐sized coccolithophores to the PIC budget of the ocean. In contrast, 50% of bSi exists in the large size fraction, reflecting the larger size of diatoms and radiolarians compared with coccolithophores. We use PIC:POC and bSi:POC ratios in the upper ocean to document a consistent signal of shallow mineral dissolution, likely linked to biologically mediated processes. Sediment trap PIC:POC and bSi:POC are elevated with respect to LVP samples and increase strongly with depth, indicating the concentration of mineral phases and/or a deficit of POC in large sinking particles. We suggest that future sampling campaigns pair LVPs with sediment traps to capture the full particulate field, especially the large aggregates that contribute to mineral‐rich deep ocean fluxes, and may be missed by LVPs.more » « less
-
GEOTRACES is an international program that has benefited from contributions by investigators in 35 nations. The program mission is to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean and to establish the sensitivity of these distributions to changing environmental conditions. This perspective first summarizes the historical motivation for the program, and then describes selected research highlights, focusing on recent findings related to iron. The patchy distribution of iron in the ocean indicates a short residence time, at the low end of the range of residence times estimated in models. Iron removal from the ocean must, therefore, be rapid. Recent results from the North Atlantic Ocean suggest that the formation of particulate authigenic iron phases may be a factor contributing to iron removal that is faster than previously thought. This article also identifies several areas where advancements are expected through modeling and synthesis efforts.more » « less
-
Wildfire smoke, particularly particulate matter less than 2.5 microns (PM2.5), represents a major source of air pollution and a growing public health problem. PM2.5 is a general term used for any particulate < 2.5 µm; however, a wide variety of particulates with different physical and chemical properties can be formed in this size range. The health impacts of PMs are controlled by their size. Unlike larger particulates, which only enter the respiratory tract, fine PMs (<0.1 µm) can also enter the bloodstream and even pass through the blood-brain barrier. The health risks due to exposure to PM can be different for various PM phases with different physical properties, which is poorly understood. We collected wildfire smoke from more than 10 major wildfires in the Western US using active air samplers that separate particles in different size ranges (>2.5 µm - <0.25 µm). Particles were collected on filters, which are pre-weighted and loaded into the impactor. The filters were weighted and compared with the pre-weight values to calculate the mass of particles collected at each size range. Our results revealed that for all the smoke from varied wildfires, the mass of particles increased with decreasing size, with the majority (more than 50%) being less than 0.25 μm. In addition, the PM2.5 total concentration was recorded using an air quality monitor and compared to the particle size distribution in different smoke samples. The results showed that as the overall concentration of wildfire smoke decreases, the fraction of particles smaller than 0.250 microns increases even more. This suggests that these ultrafine particles not only make up the majority of PM in wildfire smoke but are also more persistent in the atmosphere, even when the total PM concentration is low. Our findings highlight the magnitude of health risks posed by PM and underscore the urgent need for effective solutions to reduce respiratory exposure in affected communities.more » « less
An official website of the United States government

