skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Subgradients in Variational Analysis of Polyhedral Functions
Understanding the role that subgradients play in various second-order variational anal- ysis constructions can help us uncover new properties of important classes of functions in variational analysis. Focusing mainly on the behavior of the second subderivative and subgradient proto-derivative of polyhedral functions, i.e., functions with poly- hedral convex epigraphs, we demonstrate that choosing the underlying subgradient, utilized in the definitions of these concepts, from the relative interior of the subdif- ferential of polyhedral functions ensures stronger second-order variational properties such as strict twice epi-differentiability and strict subgradient proto-differentiability. This allows us to characterize continuous differentiability of the proximal mapping and twice continuous differentiability of the Moreau envelope of polyhedral functions. We close the paper with proving the equivalence of metric regularity and strong metric regularity of a class of generalized equations at their nondegenerate solutions.  more » « less
Award ID(s):
2108546
PAR ID:
10534377
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Optimization Theory and Applications
ISSN:
0022-3239
Subject(s) / Keyword(s):
Polyhedral functions · Reduction lemma · Nondegenerate solutions · Strict proto-differentiability · Strict twice Epi-differentiability · Proximal mappings · Strong metric regularity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of second-order smoothness for objective functions of optimization problems can provide valuable information about their stability properties and help us design efficient numerical algorithms for solving these problems. Such second-order information, however, cannot be expected in various constrained and composite optimization problems since we often have to express their objective functions in terms of extended-real-valued functions for which the classical second derivative may not exist. One powerful geometrical tool to use for dealing with such functions is the concept of twice epi-differentiability. In this paper, we study a stronger version of this concept, called strict twice epi-differentiability. We characterize this concept for certain composite functions and use it to establish the equivalence of metric regularity and strong metric regularity for a class of generalized equations at their nondegenerate solutions. Finally, we present a characterization of continuous differentiability of the proximal mapping of our composite functions. 
    more » « less
  2. This paper is devoted to the study of the second-order variational analysis of spectral functions. It is well-known that spectral functions can be expressed as a composite function of symmetric functions and eigenvalue functions. We establish several second-order properties of spectral functions when their associated symmetric functions enjoy these properties. Our main attention is given to characterize parabolic regularity for this class of functions. It was observed recently that parabolic regularity can play a central rule in ensuring the validity of important second-order variational properties, such as twice epi-differentiability. We demonstrates that for convex spectral functions, their parabolic regularity amounts to that of their symmetric functions. As an important consequence, we calculate the second subderivative of convex spectral functions, which allows us to establish second-order optimality conditions for a class of matrix optimization problems. 
    more » « less
  3. The paper is devoted to a comprehensive study of composite models in variational analysis and optimization the importance of which for numerous theoretical, algorithmic, and applied issues of operations research is difficult to overstate. The underlying theme of our study is a systematical replacement of conventional metric regularity and related requirements by much weaker metric subregulatity ones that lead us to significantly stronger and completely new results of first-order and second-order variational analysis and optimization. In this way, we develop extended calculus rules for first-order and second-order generalized differential constructions while paying the main attention in second-order variational theory to the new and rather large class of fully subamenable compositions. Applications to optimization include deriving enhanced no-gap second-order optimality conditions in constrained composite models, complete characterizations of the uniqueness of Lagrange multipliers, strong metric subregularity of Karush-Kuhn-Tucker systems in parametric optimization, and so on. 
    more » « less
  4. This paper proposes and develops a new Newton-type algorithm to solve subdifferential inclusions defined by subgradients of extended real-valued prox-regular functions. The proposed algorithm is formulated in terms of the second order subdifferential of such functions that enjoy extensive calculus rules and can be efficiently computed for broad classes of extended real-valued functions. Based on this and on the metric regularity and subregularity properties of subgradient mappings, we establish verifiable conditions ensuring the well-posedness of the proposed algorithm and its local superlinear convergence. The obtained results are also new for the class of equations defined by continuously differentiable functions with Lipschitzian gradients ([Formula: see text] functions), which is the underlying case of our consideration. The developed algorithms for prox-regular functions and their extension to a structured class of composite functions are formulated in terms of proximal mappings and forward–backward envelopes. Besides numerous illustrative examples and comparison with known algorithms for [Formula: see text] functions and generalized equations, the paper presents applications of the proposed algorithms to regularized least square problems arising in statistics, machine learning, and related disciplines. Funding: Research of P. D. Khanh is funded by Ho Chi Minh City University of Education Foundation for Science and Technology [Grant CS.2022.19.20TD]. Research of B. Mordukhovich and V. T. Phat was partly supported by the U.S. National Science Foundation [Grants DMS-1808978 and DMS-2204519]. The research of B. Mordukhovich was also supported by the Air Force Office of Scientific Research [Grant 15RT0462] and the Australian Research Council under Discovery Project DP-190100555. This work was supported by the Air Force Office of Scientific Research [Grant 15RT0462]. 
    more » « less
  5. Abstract. Modeling of a wide class of physical phenomena, such as crystal growth and flame propagation, leads to tracking fronts moving with curvature-dependent speed. When the speed is the curvature this leads to one of the classical degenerate nonlinear second-order differential equations on Euclidean space. One naturally wonders, “What is the regularity of solutions?” A priori solutions are only defined in a weak sense, but it turns out that they are always twice differentiable classical solutions. This result is optimal; their second derivative is continuous only in very rigid situations that have a simple geometric interpretation. The proof weaves together analysis and geometry. Without deeply understanding the underlying geometry, it is impossible to prove fine analytical properties. 
    more » « less