Abstract Quantum repeater is an essential ingredient for quantum networks that link distant quantum modules such as quantum computers and sensors. Motivated by distributed quantum computing and communication, quantum repeaters that relay discrete-variable quantum information have been extensively studied; while continuous-variable (CV) quantum information underpins a variety of quantum sensing and communication application, a quantum-repeater architecture for genuine CV quantum information remains largely unexplored. This paper reports a CV quantum-repeater architecture based on CV quantum teleportation assisted by the GottesmanâKitaevâPreskill code to significantly suppress the physical noise. The designed CV quantum-repeater architecture is shown to significantly improve the performance of entanglement-assisted communication, target detection based on quantum illumination and CV quantum key distribution, as three representative use cases for quantum communication and sensing.
more »
« less
Limited quantum advantage for stellar interferometry via continuous-variable teleportation
We consider stellar interferometry in the continuous-variable (CV) quantum information formalism and use the quantum Fisher information (QFI) to characterize the performance of three key strategies: direct interferometry (DI), local heterodyne measurement, and a CV teleportation-based strategy. In the lossless regime, we show that a squeezing parameter of đ â 2 (18 dB) is required to reach âŒ95% of the QFI achievable with DI; such a squeezing level is beyond what has been achieved experimentally. In the low-loss regime, the CV teleportation strategy becomes inferior to DI, and the performance gap widens as loss increases. Curiously, in the high-loss regime, a small region of loss exists where the CV teleportation strategy slightly outperforms both DI and local heterodyne, representing a transition in the optimal strategy. We describe this advantage as limited because it occurs for a small region of loss, and the magnitude of the advantage is also small. We argue that practical difficulties further impede achieving any quantum advantage, limiting the merits of a CV teleportation-based strategy for stellar interferometry.
more »
« less
- Award ID(s):
- 2304816
- PAR ID:
- 10534592
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical review
- ISSN:
- 2469-9934
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a method to build an astronomical interferometer using continuous-variable quantum teleportation to overcome transmission loss between distant telescopes. The scheme relies on two-mode squeezed states shared by distant telescopes as entanglement resources, which are distributed using continuous-variable quantum repeaters. We find the optimal measurement on the teleported states, which uses beam splitters and photon-number-resolved detection. Compared to prior proposals relying on discrete states, our scheme has the advantages of using linear optics to implement it without wasting stellar photons, and making use of multiphoton events, which are regarded as noise in previous discrete schemes. We also outline the parameter regimes in which our scheme outperforms the direct detection method, schemes utilizing distributed discrete-variable entangled states, and local heterodyne techniques.more » « less
-
We present an algorithm to reliably generate various quantum states critical to quantum error correction and universal continuous-variable (CV) quantum computing, such as Schrödinger cat states and Gottesman-Kitaev-Preskill (GKP) grid states, out of Gaussian CV cluster states. Our algorithm is based on the Photon-counting-Assisted Node-Teleportation Method (PhANTM), which uses standard Gaussian information processing on the cluster state with the only addition of local photon-number-resolving measurements. We show that PhANTM can apply polynomial gates and embed cat states within the cluster. This method stabilizes cat states against Gaussian noise and perpetuates non-Gaussianity within the cluster. We show that existing protocols for breeding cat states can be embedded into cluster state processing using PhANTM.more » « less
-
Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses.more » « less
-
Abstract We propose a quantum-enhanced lidar system to estimate a targetâs radial velocity, which employs squeezed and frequency-entangled signal and idler beams. We compare its performance against a classical protocol using a coherent state with the same pulse duration and energy, showing that quantum resources provide a precision enhancement in the estimation of the velocity of the object. We identify three distinct parameter regimes characterized by the amount of squeezing and frequency entanglement. In two of them, a quantum advantage exceeding the standard quantum limit is achieved assuming no photon losses. Additionally, we show that an optimal measurement to attain these results in the lossless case is frequency-resolved photon counting. Finally, we consider the effect of photon losses for the high-squeezing regime, which leads to a constant factor quantum advantage higher than 3âdB in the variance of the estimator, given a roundtrip lidar-to-target-to-lidar transmissivity larger than 50%.more » « less
An official website of the United States government

