Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in {\zeta(s)}. For example, integrating {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than {\frac{1}{\log T}}and {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function. 
                        more » 
                        « less   
                    
                            
                            Products of primes in arithmetic progressions
                        
                    
    
            Abstract A conjecture of Erdős states that, for any large primeq, every reduced residue class {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integerq, every reduced residue class {(\operatorname{mod}q)}can be written as {p_{1}p_{2}p_{3}}with {p_{1},p_{2},p_{3}\leq q}primes. We also show that, for any {\varepsilon>0}and any sufficiently large integerq, at least {(\frac{2}{3}-\varepsilon)\varphi(q)}reduced residue classes {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}.The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups of {\mathbb{Z}_{q}^{\times}}of small index and study in detail the exceptional case that there exists a quadratic character {\psi~{}(\operatorname{mod}\,q)}such that {\psi(p)=-1}for very many primes {p\leq q}. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1926686
- PAR ID:
- 10534667
- Publisher / Repository:
- De Gruyter Academic Publishing
- Date Published:
- Journal Name:
- Journal für die reine und angewandte Mathematik (Crelles Journal)
- Volume:
- 0
- Issue:
- 0
- ISSN:
- 0075-4102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We introduce a distributional Jacobian determinant \det DV_{\beta}(Dv)in dimension two for the nonlinear complex gradient V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}})for any \beta>-1, whenever v\in W^{1\smash{,}2}_{\mathrm{loc}}and \beta\lvert Dv\rvert^{1+\beta}\in W^{1\smash{,}2}_{\mathrm{loc}}.This is new when \beta\neq 0.Given any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant \det DV_{\beta}(Du)is a nonnegative Radon measure with some quantitative local lower and upper bounds.We also give the following two applications. Applying this result with \beta=0, we develop an approach to build up a Liouville theorem, which improves that of Savin.Precisely, if 𝑢 is an ∞-harmonic function in the whole \mathbb{R}^{2}with \liminf_{R\to\infty}\inf_{c\in\mathbb{R}}\frac{1}{R}\barint_{B(0,R)}\lvert u(x)-c\rvert\,dx<\infty,then u=b+a\cdot xfor some b\in\mathbb{R}and a\in\mathbb{R}^{2}.Denoting by u_{p}the 𝑝-harmonic function having the same nonconstant boundary condition as 𝑢, we show that \det DV_{\beta}(Du_{p})\to\det DV_{\beta}(Du)as p\to\inftyin the weak-⋆ sense in the space of Radon measure.Recall that V_{\beta}(Du_{p})is always quasiregular mappings, but V_{\beta}(Du)is not in general.more » « less
- 
            Abstract Let {G(k)}denote the least numbershaving the property that everysufficiently large natural number is the sum of at mostspositive integralk-th powers.Then for all {k\in\mathbb{N}}, one has G(k)\leqslant\lceil k(\log k+4.20032)\rceil. Our new methods improve on all bounds available hitherto when {k\geqslant 14}.more » « less
- 
            Abstract Let \mathrm{E}/\mathbb{Q}be an elliptic curve and 𝑝 a prime of supersingular reduction for \mathrm{E}.Consider a quadratic extension L/\mathbb{Q}_{p}and the corresponding anticyclotomic \mathbb{Z}_{p}-extension L_{\infty}/L.We analyze the structure of the points \mathrm{E}(L_{\infty})and describe two global implications of our results.more » « less
- 
            Abstract LetXbe acompact orientable non-Haken 3-manifold modeled on the Thurston geometry {\operatorname{Nil}}. We show that the diffeomorphism group {\operatorname{Diff}(X)}deformation retracts to the isometry group {\operatorname{Isom}(X)}. Combining this with earlier work by many authors, this completes the determination the homotopy type of {\operatorname{Diff}(X)}for any compact, orientable, prime 3-manifoldX.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    