skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 1, 2025

Title: Learning Traveling Solitary Waves Using Separable Gaussian Neural Networks
In this paper, we apply a machine-learning approach to learn traveling solitary waves across various physical systems that are described by families of partial differential equations (PDEs). Our approach integrates a novel interpretable neural network (NN) architecture, called Separable Gaussian Neural Networks (SGNN) into the framework of Physics-Informed Neural Networks (PINNs). Unlike the traditional PINNs that treat spatial and temporal data as independent inputs, the present method leverages wave characteristics to transform data into the so-called co-traveling wave frame. This reformulation effectively addresses the issue of propagation failure in PINNs when applied to large computational domains. Here, the SGNN architecture demonstrates robust approximation capabilities for single-peakon, multi-peakon, and stationary solutions (known as “leftons”) within the (1+1)-dimensional, b-family of PDEs. In addition, we expand our investigations, and explore not only peakon solutions in the ab-family but also compacton solutions in (2+1)-dimensional, Rosenau-Hyman family of PDEs. A comparative analysis with multi-layer perceptron (MLP) reveals that SGNN achieves comparable accuracy with fewer than a tenth of the neurons, underscoring its efficiency and potential for broader application in solving complex nonlinear PDEs.  more » « less
Award ID(s):
2204782
PAR ID:
10534743
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Entropy
Volume:
26
Issue:
5
ISSN:
1099-4300
Page Range / eLocation ID:
396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) in a forward and inverse manner using neural networks. However, balancing individual loss terms can be challenging, mainly when training these networks for stiff PDEs and scenarios requiring enforcement of numerous constraints. Even though statistical methods can be applied to assign relative weights to the regression loss for data, assigning relative weights to equation-based loss terms remains a formidable task. This paper proposes a method for assigning relative weights to the mean squared loss terms in the objective function used to train PINNs. Due to the presence of temporal gradients in the governing equation, the physics-informed loss can be recast using numerical integration through backward Euler discretization. The physics-uninformed and physics-informed networks should yield identical predictions when assessed at corresponding spatiotemporal positions. We refer to this consistency as “temporal consistency.” This approach introduces a unique method for training physics-informed neural networks (PINNs), redefining the loss function to allow for assigning relative weights with statistical properties of the observed data. In this work, we consider the two- and three-dimensional Navier–Stokes equations and determine the kinematic viscosity using the spatiotemporal data on the velocity and pressure fields. We consider numerical datasets to test our method. We test the sensitivity of our method to the timestep size, the number of timesteps, noise in the data, and spatial resolution. Finally, we use the velocity field obtained using particle image velocimetry experiments to generate a reference pressure field and test our framework using the velocity and pressure fields. 
    more » « less
  2. Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems. 
    more » « less
  3. Despite the success of physics-informed neural networks (PINNs) in approximating partial differential equations (PDEs), PINNs can sometimes fail to converge to the correct solution in problems involving complicated PDEs. This is reflected in several recent studies on characterizing the "failure modes" of PINNs, although a thorough understanding of the connection between PINN failure modes and sampling strategies is missing. In this paper, we provide a novel perspective of failure modes of PINNs by hypothesizing that training PINNs relies on successful "propagation" of solution from initial and/or boundary condition points to interior points. We show that PINNs with poor sampling strategies can get stuck at trivial solutions if there are propagation failures, characterized by highly imbalanced PDE residual fields. To mitigate propagation failures, we propose a novel Retain-Resample-Release sampling (R3) algorithm that can incrementally accumulate collocation points in regions of high PDE residuals with little to no computational overhead. We provide an extension of R3 sampling to respect the principle of causality while solving timedependent PDEs. We theoretically analyze the behavior of R3 sampling and empirically demonstrate its efficacy and efficiency in comparison with baselines on a variety of PDE problems. 
    more » « less
  4. PSO-PINN is a class of algorithms for training physics-informed neural networks (PINN) using particle swarm optimization (PSO). PSO-PINN can mitigate the well-known difficulties presented by gradient descent training of PINNs when dealing with PDEs with irregular solutions. Additionally, PSO-PINN is an ensemble approach to PINN that yields reproducible predictions with quantified uncertainty. In this paper, we introduce Multi-Objective PSO-PINN, which treats PINN training as a multi-objective problem. The proposed multi-objective PSO-PINN represents a new paradigm in PINN training, which thus far has relied on scalarizations of the multi-objective loss function. A full multi-objective approach allows on-the-fly compromises in the trade-off among the various components of the PINN loss function. Experimental results with a diffusion PDE problem demonstrate the promise of this methodology. 
    more » « less
  5. The integration of machine learning in power systems, particularly in stability and dynamics, addresses the challenges brought by the integration of renewable energies and distributed energy resources (DERs). Traditional methods for power system transient stability, involving solving differential equations with computational techniques, face limitations due to their time-consuming and computationally demanding nature. This paper introduces physics-informed Neural Networks (PINNs) as a promising solution for these challenges, especially in scenarios with limited data availability and the need for high computational speed. PINNs offer a novel approach for complex power systems by incorporating additional equations and adapting to various system scales, from a single bus to multi-bus networks. Our study presents the first comprehensive evaluation of physics-informed Neural Networks (PINNs) in the context of power system transient stability, addressing various grid complexities. Additionally, we introduce a novel approach for adjusting loss weights to improve the adaptability of PINNs to diverse systems. Our experimental findings reveal that PINNs can be efficiently scaled while maintaining high accuracy. Furthermore, these results suggest that PINNs significantly outperform the traditional ode45 method in terms of efficiency, especially as the system size increases, showcasing a progressive speed advantage over ode45. 
    more » « less