skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Robustness of Neural Collapse and the Neural Collapse of Robustness
Neural Collapse refers to the curious phenomenon in the end of training of a neural network, where feature vectors and classification weights converge to a very simple geometrical arrangement (a simplex). While it has been observed empirically in various cases and has been theoretically motivated, its connection with crucial properties of neural networks, like their generalization and robustness, remains unclear. In this work, we study the stability properties of these simplices. We find that the simplex structure disappears under small adversarial attacks, and that perturbed examples "leap" between simplex vertices. We further analyze the geometry of networks that are optimized to be robust against adversarial perturbations of the input, and find that Neural Collapse is a pervasive phenomenon in these cases as well, with clean and perturbed representations forming aligned simplices, and giving rise to a robust simple nearest-neighbor classifier. By studying the propagation of the amount of collapse inside the network, we identify novel properties of both robust and non-robust machine learning models, and show that earlier, unlike later layers maintain reliable simplices on perturbed data.  more » « less
Award ID(s):
1922658
PAR ID:
10534745
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Transactions on Machine Learning Research
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The adversarial vulnerability of neural nets, and subsequent techniques to create robust models have attracted significant attention; yet we still lack a full understanding of this phenomenon. Here, we study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods, namely the Neural Tangent Kernel (NTK), following a growing body of work that leverages the NTK approximation to successfully analyze important deep learning phenomena and design algorithms for new applications. We show how NTKs allow to generate adversarial examples in a ``training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the ``lazy'' regime. We leverage this connection to provide an alternative view on robust and non-robust features, which have been suggested to underlie the adversarial brittleness of neural nets. Specifically, we define and study features induced by the eigendecomposition of the kernel to better understand the role of robust and non-robust features, the reliance on both for standard classification and the robustness-accuracy trade-off. We find that such features are surprisingly consistent across architectures, and that robust features tend to correspond to the largest eigenvalues of the model, and thus are learned early during training. Our framework allows us to identify and visualize non-robust yet useful features. Finally, we shed light on the robustness mechanism underlying adversarial training of neural nets used in practice: quantifying the evolution of the associated empirical NTK, we demonstrate that its dynamics falls much earlier into the ``lazy'' regime and manifests a much stronger form of the well known bias to prioritize learning features within the top eigenspaces of the kernel, compared to standard training. 
    more » « less
  2. While cross entropy (CE) is the most commonly used loss function to train deep neural networks for classification tasks, many alternative losses have been developed to obtain better empirical performance. Among them, which one is the best to use is still a mystery, because there seem to be multiple factors affecting the answer, such as properties of the dataset, the choice of network architecture, and so on. This paper studies the choice of loss function by examining the last-layer features of deep networks, drawing inspiration from a recent line work showing that the global optimal solution of CE and mean-square-error (MSE) losses exhibits a Neural Collapse phenomenon. That is, for sufficiently large networks trained until convergence, (i) all features of the same class collapse to the corresponding class mean and (ii) the means associated with different classes are in a configuration where their pairwise distances are all equal and maximized. We extend such results and show through global solution and landscape analyses that a broad family of loss functions including commonly used label smoothing (LS) and focal loss (FL) exhibits Neural Collapse. Hence, all relevant losses (i.e., CE, LS, FL, MSE) produce equivalent features on training data. In particular, based on the unconstrained feature model assumption, we provide either the global landscape analysis for LS loss or the local landscape analysis for FL loss and show that the (only!) global minimizers are neural collapse solutions, while all other critical points are strict saddles whose Hessian exhibit negative curvature directions either in the global scope for LS loss or in the local scope for FL loss near the optimal solution. The experiments further show that Neural Collapse features obtained from all relevant losses (i.e., CE, LS, FL, MSE) lead to largely identical performance on test data as well, provided that the network is sufficiently large and trained until convergence. 
    more » « less
  3. Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized. We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes. 
    more » « less
  4. null (Ed.)
    This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks. 
    more » « less
  5. When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called “neural collapse” phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer’s classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon under normalized features. Based on an un-constrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddle points with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization. Code for our experiments can be found at https://github.com/cjyaras/normalized-neural-collapse. 
    more » « less