skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability
This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks.  more » « less
Award ID(s):
2028001 1910017
PAR ID:
10281589
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Computer Aided Verification
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This manuscript presents the updated version of the Neural Network Verification (NNV) tool. NNV is a formal verification software tool for deep learning models and cyber-physical systems with neural network components. NNV was first introduced as a verification framework for feedforward and convolutional neural networks, as well as for neural network control systems. Since then, numerous works have made significant improvements in the verification of new deep learning models, as well as tackling some of the scalability issues that may arise when verifying complex models. In this new version of NNV, we introduce verification support for multiple deep learning models, including neural ordinary differential equations, semantic segmentation networks and recurrent neural networks, as well as a collection of reachability methods that aim to reduce the computation cost of reachability analysis of complex neural networks. We have also added direct support for standard input verification formats in the community such as VNNLIB (verification properties), and ONNX (neural networks) formats. We present a collection of experiments in which NNV verifies safety and robustness properties of feedforward, convolutional, semantic segmentation and recurrent neural networks, as well as neural ordinary differential equations and neural network control systems. Furthermore, we demonstrate the capabilities of NNV against a commercially available product in a collection of benchmarks from control systems, semantic segmentation, image classification, and time-series data. 
    more » « less
  2. Drăgoi, C.; Mukherjee, S.; Namjoshi, K. (Ed.)
    This paper studies the problem of range analysis for feedforward neural networks, which is a basic primitive for applications such as robustness of neural networks, compliance to specifications and reachability analysis of neural-network feedback systems. Our approach focuses on ReLU (rectified linear unit) feedforward neural nets that present specific difficulties: approaches that exploit derivatives do not apply in general, the number of patterns of neuron activations can be quite large even for small networks, and convex approximations are generally too coarse. In this paper, we employ set-based methods and abstract interpretation that have been very successful in coping with similar difficulties in classical program verification. We present an approach that abstracts ReLU feedforward neural networks using tropical polyhedra. We show that tropical polyhedra can efficiently abstract ReLU activation function, while being able to control the loss of precision due to linear computations. We show how the connection between ReLU networks and tropical rational functions can provide approaches for range analysis of ReLU neural networks. We report on a preliminary evaluation of our approach using a prototype implementation. 
    more » « less
  3. Neural networks are an increasingly common tool for solving problems that require complex analysis and pattern matching, such as identifying stop signs in a self driving car or processing medical imagery during diagnosis. Accordingly, verification of neural networks for safety and correctness is of great importance, as mispredictions can have catastrophic results in safety critical domains. As neural networks are known to be sensitive to small changes in input, leading to vulnerabilities and adversarial attacks, analyzing the robustness of networks to small changes in input is a key piece of evaluating their safety and correctness. However, there are many real-world scenarios where the requirements of robustness are not clear cut, and it is crucial to develop measures that assess the level of robustness of a given neural network model and compare levels of robustness across different models, rather than using a binary characterization such as robust vs. not robust. We believe there is great need for developing scalable quantitative robustness verification techniques for neural networks. Formal verification techniques can provide guarantees of correctness, but most existing approaches do not provide quantitative robustness measures and are not effective in analyzing real-world network sizes. On the other hand, sampling-based quantitative robustness is not hindered much by the size of networks but cannot provide sound guarantees of quantitative results. We believe more research is needed to address the limitations of both symbolic and sampling-based verification approaches and create sound, scalable techniques for quantitative robustness verification of neural networks. 
    more » « less
  4. Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an infinity-norm box constraint on the input, the embedded network provides an infinity-norm box overapproximation for the output of the original network. Second, using infinity-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the infinity-norm box robustness margins for reachability and classification problems. Third, of independent value, we show that employing a suitable relative classifier variable in our analysis will lead to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and run time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness. 
    more » « less
  5. Developers of machine learning applications often apply post-training neural network optimizations, such as quantization and pruning, that approximate a neural network to speed up inference and reduce energy consumption, while maintaining high accuracy and robustness. Despite a recent surge in techniques for the robustness verification of neural networks, a major limitation of almost all state-of-the-art approaches is that the verification needs to be run from scratch every time the network is even slightly modified. Running precise end-to-end verification from scratch for every new network is expensive and impractical in many scenarios that use or compare multiple approximate network versions, and the robustness of all the networks needs to be verified efficiently. We present FANC, the first general technique for transferring proofs between a given network and its multiple approximate versions without compromising verifier precision. To reuse the proofs obtained when verifying the original network, FANC generates a set of templates – connected symbolic shapes at intermediate layers of the original network – that capture the proof of the property to be verified. We present novel algorithms for generating and transforming templates that generalize to a broad range of approximate networks and reduce the verification cost. We present a comprehensive evaluation demonstrating the effectiveness of our approach. We consider a diverse set of networks obtained by applying popular approximation techniques such as quantization and pruning on fully-connected and convolutional architectures and verify their robustness against different adversarial attacks such as adversarial patches, L 0 , rotation and brightening. Our results indicate that FANC can significantly speed up verification with state-of-the-art verifier, DeepZ by up to 4.1x. 
    more » « less