skip to main content

Title: Robustness Verification of Semantic Segmentation Neural Networks Using Relaxed Reachability
This paper introduces robustness verification for semantic segmentation neural networks (in short, semantic segmentation networks [SSNs]), building on and extending recent approaches for robustness verification of image classification neural networks. Despite recent progress in developing verification methods for specifications such as local adversarial robustness in deep neural networks (DNNs) in terms of scalability, precision, and applicability to different network architectures, layers, and activation functions, robustness verification of semantic segmentation has not yet been considered. We address this limitation by developing and applying new robustness analysis methods for several segmentation neural network architectures, specifically by addressing reachability analysis of up-sampling layers, such as transposed convolution and dilated convolution. We consider several definitions of robustness for segmentation, such as the percentage of pixels in the output that can be proven robust under different adversarial perturbations, and a robust variant of intersection-over-union (IoU), the typical performance evaluation measure for segmentation tasks. Our approach is based on a new relaxed reachability method, allowing users to select the percentage of a number of linear programming problems (LPs) to solve when constructing the reachable set, through a relaxation factor percentage. The approach is implemented within NNV, then applied and evaluated on segmentation datasets, such as a more » multi-digit variant of MNIST known as M2NIST. Thorough experiments show that by using transposed convolution for up-sampling and average-pooling for down-sampling, combined with minimizing the number of ReLU layers in the SSNs, we can obtain SSNs with not only high accuracy (IoU), but also that are more robust to adversarial attacks and amenable to verification. Additionally, using our new relaxed reachability method, we can significantly reduce the verification time for neural networks whose ReLU layers dominate the total analysis time, even in classification tasks. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2028001 1910017
Publication Date:
NSF-PAR ID:
10281589
Journal Name:
International Conference on Computer Aided Verification
Sponsoring Org:
National Science Foundation
More Like this
  1. Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an infinity-norm box constraint on the input, the embedded network provides an infinity-norm box overapproximation for the output of the original network. Second, using infinity-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the infinity-norm box robustness margins for reachability and classification problems. Third, of independent value, we show that employing a suitable relative classifier variable in our analysis will lead to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and runmore »time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness.« less
  2. Silva, Alexandra ; Leino, K. Rustan (Ed.)
    Neural Networks (NNs) have increasingly apparent safety implications commensurate with their proliferation in real-world applications: both unanticipated as well as adversarial misclassifications can result in fatal outcomes. As a consequence, techniques of formal verification have been recognized as crucial to the design and deployment of safe NNs. In this paper, we introduce a new approach to formally verify the most commonly considered safety specifications for ReLU NNs -- i.e. polytopic specifications on the input and output of the network. Like some other approaches, ours uses a relaxed convex program to mitigate the combinatorial complexity of the problem. However, unique in our approach is the way we use a convex solver not only as a linear feasibility checker, but also as a means of penalizing the amount of relaxation allowed in solutions. In particular, we encode each ReLU by means of the usual linear constraints, and combine this with a convex objective function that penalizes the discrepancy between the output of each neuron and its relaxation. This convex function is further structured to force the largest relaxations to appear closest to the input layer; this provides the further benefit that the most ``problematic'' neurons are conditioned as early as possible, whenmore »conditioning layer by layer. This paradigm can be leveraged to create a verification algorithm that is not only faster in general than competing approaches, but is also able to verify considerably more safety properties; we evaluated PEREGRiNN on a standard MNIST robustness verification suite to substantiate these claims.« less
  3. Developers of machine learning applications often apply post-training neural network optimizations, such as quantization and pruning, that approximate a neural network to speed up inference and reduce energy consumption, while maintaining high accuracy and robustness. Despite a recent surge in techniques for the robustness verification of neural networks, a major limitation of almost all state-of-the-art approaches is that the verification needs to be run from scratch every time the network is even slightly modified. Running precise end-to-end verification from scratch for every new network is expensive and impractical in many scenarios that use or compare multiple approximate network versions, and the robustness of all the networks needs to be verified efficiently. We present FANC, the first general technique for transferring proofs between a given network and its multiple approximate versions without compromising verifier precision. To reuse the proofs obtained when verifying the original network, FANC generates a set of templates – connected symbolic shapes at intermediate layers of the original network – that capture the proof of the property to be verified. We present novel algorithms for generating and transforming templates that generalize to a broad range of approximate networks and reduce the verification cost. We present a comprehensive evaluationmore »demonstrating the effectiveness of our approach. We consider a diverse set of networks obtained by applying popular approximation techniques such as quantization and pruning on fully-connected and convolutional architectures and verify their robustness against different adversarial attacks such as adversarial patches, L 0 , rotation and brightening. Our results indicate that FANC can significantly speed up verification with state-of-the-art verifier, DeepZ by up to 4.1x.« less
  4. Drăgoi, C. ; Mukherjee, S. ; Namjoshi, K. (Ed.)
    This paper studies the problem of range analysis for feedforward neural networks, which is a basic primitive for applications such as robustness of neural networks, compliance to specifications and reachability analysis of neural-network feedback systems. Our approach focuses on ReLU (rectified linear unit) feedforward neural nets that present specific difficulties: approaches that exploit derivatives do not apply in general, the number of patterns of neuron activations can be quite large even for small networks, and convex approximations are generally too coarse. In this paper, we employ set-based methods and abstract interpretation that have been very successful in coping with similar difficulties in classical program verification. We present an approach that abstracts ReLU feedforward neural networks using tropical polyhedra. We show that tropical polyhedra can efficiently abstract ReLU activation function, while being able to control the loss of precision due to linear computations. We show how the connection between ReLU networks and tropical rational functions can provide approaches for range analysis of ReLU neural networks. We report on a preliminary evaluation of our approach using a prototype implementation.
  5. Bogomolov, S. ; Parker, D. (Ed.)
    Continuous deep learning models, referred to as Neural Ordinary Differential Equations (Neural ODEs), have received considerable attention over the last several years. Despite their burgeoning impact, there is a lack of formal analysis techniques for these systems. In this paper, we consider a general class of neural ODEs with varying architectures and layers, and introduce a novel reachability framework that allows for the formal analysis of their behavior. The methods developed for the reachability analysis of neural ODEs are implemented in a new tool called NNVODE. Specifically, our work extends an existing neural network verification tool to support neural ODEs. We demonstrate the capabilities and efficacy of our methods through the analysis of a set of benchmarks that include neural ODEs used for classification, and in control and dynamical systems, including an evaluation of the efficacy and capabilities of our approach with respect to existing software tools within the continuous-time systems reachability literature, when it is possible to do so.