skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspectives on shipping emissions and their impacts on the surface ocean and lower atmosphere: An environmental-social-economic dimension
Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts.  more » « less
Award ID(s):
1840868
PAR ID:
10534769
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
University of California Press
Date Published:
Journal Name:
Elem Sci Anth
Volume:
11
Issue:
1
ISSN:
2325-1026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfire is a natural and integral ecosystem process that is necessary to maintain species composition, structure, and ecosystem function. Extreme fires have been increasing over the last decades, which have a substantial impact on air quality, human health, the environment, and climate systems. Smoke aerosols can be transported over large distances, acting as pollutants that affect adjacent and distant downwind communities and environments. Fire emissions are a complicated mixture of trace gases and aerosols, many of which are short‐lived and chemically reactive, and this mixture affects atmospheric composition in complex ways that are not completely understood. We present a review of the current state of knowledge of smoke aerosol emissions originating from wildfires. Satellite observations, from both passive and active instruments, are critical to providing the ability to view the large‐scale influence of fire, smoke, and their impacts. Progress in the development of fire emission estimates to regional and global chemical transport models has advanced, although significant challenges remain, such as connecting ecosystems and fuels burned with dependent atmospheric chemistry. Knowledge of the impact of smoke on radiation, clouds, and precipitation has progressed and is an essential topical research area. However, current measurements and parameterizations are not adequate to describe the impacts on clouds of smoke particles (e.g., CNN, INP) from fire emissions in the range of representative environmental conditions necessary to advance science or modeling. We conclude by providing recommendations to the community that we believe will advance the science and understanding of the impact of fire smoke emissions on human and environmental health, as well as feedback with climate systems. 
    more » « less
  2. Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to “zero emission vehicles” is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogencontaining organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out. 
    more » « less
  3. Ocean biogeochemistry involves the production and consumption of an array of organic compounds and halogenated trace gases that influence the composition and reactivity of the atmosphere, air quality, and the climate system. Some of these molecules affect tropospheric ozone and secondary aerosol formation and impact the atmospheric oxidation capacity on both regional and global scales. Other emissions undergo transport to the stratosphere, where they contribute to the halogen burden and influence ozone. The oceans also comprise a major sink for highly soluble or reactive atmospheric gases. These issues are an active area of research by the SOLAS (Surface Ocean Lower Atmosphere) community. This article provides a status report on progress over the past decade, unresolved issues, and future research directions to understand the influence of ocean biogeochemistry on gas-phase atmospheric chemistry. Common challenges across the subject area involve establishing the role that biology plays in controlling the emissions of gases to the atmosphere and the inclusion of such complex processes, for example involving the sea surface microlayer, in large-scale global models. 
    more » « less
  4. Abstract Frequency and intensity of warm and moist air-mass intrusions into the Arctic have increased over the past decades and have been related to sea ice melt. During our year-long expedition in the remote central Arctic Ocean, a record-breaking increase in temperature, moisture and downwelling-longwave radiation was observed in mid-April 2020, during an air-mass intrusion carrying air pollutants from northern Eurasia. The two-day intrusion, caused drastic changes in the aerosol size distribution, chemical composition and particle hygroscopicity. Here we show how the intrusion transformed the Arctic from a remote low-particle environment to an area comparable to a central-European urban setting. Additionally, the intrusion resulted in an explosive increase in cloud condensation nuclei, which can have direct effects on Arctic clouds’ radiation, their precipitation patterns, and their lifetime. Thus, unless prompt actions to significantly reduce emissions in the source regions are taken, such intrusion events are expected to continue to affect the Arctic climate. 
    more » « less
  5. Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance StatementRecent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research. 
    more » « less