Extreme, downslope mountain winds often generate dangerous wildfire conditions. We used the wildfire spread model Fire Area Simulator (FARSITE) to simulate two wildfires influenced by strong wind events in Santa Barbara, CA. High spatial-resolution imagery for fuel maps and hourly wind downscaled to 100 m were used as model inputs, and sensitivity tests were performed to evaluate the effects of ignition timing and location on fire spread. Additionally, burn area rasters from FARSITE simulations were compared to minimum travel time rasters from FlamMap simulations, a wildfire model similar to FARSITE that holds environmental variables constant. Utilization of two case studies during strong winds revealed that FARSITE was able to successfully reconstruct the spread rate and size of wildfires when spotting was minimal. However, in situations when spotting was an important factor in rapid downslope wildfire spread, both FARSITE and FlamMap were unable to simulate realistic fire perimeters. We show that this is due to inherent limitations in the models themselves, related to the slope-orientation relative to the simulated fire spread, and the dependence of ember launch and land locations. This finding has widespread implications, given the role of spotting in fire progression during extreme wind events.
more »
« less
Systematically tracking the hourly progression of large wildfires using GOES satellite observations
Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).
more »
« less
- Award ID(s):
- 2324008
- PAR ID:
- 10534831
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Earth System Science Data
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1866-3516
- Page Range / eLocation ID:
- 1395 to 1424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is a need for nowcasting tools to provide timely and accurate updates on the location and rate of spread (ROS) of large wildfires, especially those impacting communities in the wildland urban interface. In this study, we demonstrate how fixed‐site weather radars can be used to fill this gap. Specifically, we develop and test a radar‐based fire‐perimeter tracking tool that leverages the tendency for local maxima in the radar reflectivity to be collocated with active fire perimeters. Reflectivity maxima are located using search radials from points inside a fire polygon, and perimeters are updated at intervals of ∼10 min. The algorithm is tested using publicly available Next Generation Weather Radar radar data for two large and destructive wildfires, the Camp and Bear Fires, both occurring in northern California, USA. The radar‐based fire perimeters are compared with available, albeit limited, satellite and airborne infrared observations, showing good agreement with conventional fire‐tracking tools. The radar data also provide insights into fire ROS, revealing the importance of long‐range spotting in generating ROS that exceeds conventional estimates. One limitation of this study is that high‐resolution fire perimeter validation data are sparsely available, precluding detailed error quantification for the radar estimates drawn from samples spanning a range of environmental conditions and radar configurations. Nevertheless, the radar tracking approach provides the basis for improved situational awareness during high‐impact fires.more » « less
-
BackgroundAccurately estimating burned area from satellites is key to improving biomass burning emission models, studying fire evolution and assessing environmental impacts. Previous studies have found that current methods for estimating burned area of fires from satellite active-fire data do not always provide an accurate estimate. Aims and methodsIn this work, we develop a novel algorithm to estimate hourly accumulated burned area based on the area from boundaries of non-convex polygons containing the accumulated Visible Infrared Imaging Radiometer Suite (VIIRS) active-fire detections. Hourly time series are created by combining VIIRS estimates with Fire Radiative Power (FRP) estimates from GOES-17 (Geostationary Operational Environmental Satellite) data. Conclusions, key results and implicationWe evaluate the performance of the algorithm for both accumulated and change in burned area between airborne observations, and specifically examine sensitivity to the choice of the parameter controlling how much the boundary can shrink towards the interior of the area polygon. Results of the hourly accumulation of burned area for multiple fires from 2019 to 2020 generally correlate strongly with airborne infrared (IR) observations collected by the United States Forest Service National Infrared Operations (NIROPS), exhibiting correlation coefficient values usually greater than 0.95 and errors <20%.more » « less
-
Wildfires in the Arctic-boreal zone have increased in frequency over recent decades, carrying substantial ecological, social, and economic consequences. Remote sensing is crucial for mapping burned areas, monitoring wildfire dynamics, and evaluating their impacts. However, existing high-latitude burned area products suffer from significant discrepancies, particularly in Siberia, and their coarse spatial resolutions limit accuracy and utility. To address these gaps, we developed a convolutional neural network model to map burned areas at a 30-meter resolution across the Arctic-boreal zone using Landsat and Sentinel-2 imagery. Our model achieved promising results, with an Intersection Over Union (IOU) of 0.77 and an F1 score of 0.85 on unseen test data, performing better in North America (IOU=0.84) than Eurasia (IOU=0.72) due to differences in fire regimes and data quality. Predictions for six representative years showed our model’s burned area closely matched the median values of Landsat, MODIS, and VIIRS-based products, although alignment varied annually and spatially. Visual assessments indicated our approach was generally more accurate, notably in detecting unburned vegetation islands within fire perimeters missed by other products. This research has numerous potential applications, such as analyzing feedback between vegetation and burn patterns, characterizing spatial dynamics of unburned islands, and improving carbon emission estimates through detailed burn severity assessments. Here we have provided the primary series of scripts used to achieve the above results. In these scripts we use historical vector fire polygons to download imagery from Landsat 5, 7, 8, 9 and Sentinel-2 to train a deep learning model called a UNet++ in the Arctic-boreal zone. Imagery is downloaded from Google Earth Engine, while all other processing is done locally. The series of 6 scripts describes main steps from downloading training data, pre-processing it, training the model, and applying the model across the Arctic Boreal Zone. All scripting is done in python through .py scripts and Jupyter notebooks (.ipynb). Our study area includes Alaska, Canada and Eurasia, and we trained our model on all historical fire polygons from 1985-2020.more » « less
-
null (Ed.)Producing high-resolution near-real-time forecasts of fire behavior and smoke impact that are useful for fire and air quality management requires accurate initialization of the fire location. One common representation of the fire progression is through the fire arrival time, which defines the time that the fire arrives at a given location. Estimating the fire arrival time is critical for initializing the fire location within coupled fire-atmosphere models. We present a new method that utilizes machine learning to estimate the fire arrival time from satellite data in the form of burning/not burning/no data rasters. The proposed method, based on a support vector machine (SVM), is tested on the 10 largest California wildfires of the 2020 fire season, and evaluated using independent observed data from airborne infrared (IR) fire perimeters. The SVM method results indicate a good agreement with airborne fire observations in terms of the fire growth and a spatial representation of the fire extent. A 12% burned area absolute percentage error, a 5% total burned area mean percentage error, a 0.21 False Alarm Ratio average, a 0.86 Probability of Detection average, and a 0.82 Sørensen’s coefficient average suggest that this method can be used to monitor wildfires in near-real-time and provide accurate fire arrival times for improving fire modeling even in the absence of IR fire perimeters.more » « less
An official website of the United States government

