skip to main content


Title: Machine Learning Estimation of Fire Arrival Time from Level-2 Active Fires Satellite Data
Producing high-resolution near-real-time forecasts of fire behavior and smoke impact that are useful for fire and air quality management requires accurate initialization of the fire location. One common representation of the fire progression is through the fire arrival time, which defines the time that the fire arrives at a given location. Estimating the fire arrival time is critical for initializing the fire location within coupled fire-atmosphere models. We present a new method that utilizes machine learning to estimate the fire arrival time from satellite data in the form of burning/not burning/no data rasters. The proposed method, based on a support vector machine (SVM), is tested on the 10 largest California wildfires of the 2020 fire season, and evaluated using independent observed data from airborne infrared (IR) fire perimeters. The SVM method results indicate a good agreement with airborne fire observations in terms of the fire growth and a spatial representation of the fire extent. A 12% burned area absolute percentage error, a 5% total burned area mean percentage error, a 0.21 False Alarm Ratio average, a 0.86 Probability of Detection average, and a 0.82 Sørensen’s coefficient average suggest that this method can be used to monitor wildfires in near-real-time and provide accurate fire arrival times for improving fire modeling even in the absence of IR fire perimeters.  more » « less
Award ID(s):
1664175
PAR ID:
10280475
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
13
Issue:
11
ISSN:
2072-4292
Page Range / eLocation ID:
2203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increases in wildfire activity and the resulting impacts have prompted the development of high-resolution wildfire behavior models for forecasting fire spread. Recent progress in using satellites to detect fire locations further provides the opportunity to use measurements toward improving fire spread forecasts from numerical models through data assimilation. This work develops a physics-informed approach for inferring the history of a wildfire from satellite measurements, providing the necessary information to initialize coupled atmosphere–wildfire models from a measured wildfire state. The fire arrival time, which is the time the fire reaches a given spatial location, acts as a succinct representation of the history of a wildfire. In this work, a conditional Wasserstein generative adversarial network (cWGAN), trained with WRF–SFIRE simulations, is used to infer the fire arrival time from satellite active fire data. The cWGAN is used to produce samples of likely fire arrival times from the conditional distribution of arrival times given satellite active fire detections. Samples produced by the cWGAN are further used to assess the uncertainty of predictions. The cWGAN is tested on four California wildfires occurring between 2020 and 2022, and predictions for fire extent are compared against high-resolution airborne infrared measurements. Further, the predicted ignition times are compared with reported ignition times. An average Sørensen’s coefficient of 0.81 for the fire perimeters and an average ignition time difference of 32 min suggest that the method is highly accurate.

    Significance Statement

    To initialize coupled atmosphere–wildfire simulations in a physically consistent way based on satellite measurements of active fire locations, it is critical to ensure the state of the fire and atmosphere aligns at the start of the forecast. If known, the history of a wildfire may be used to develop an atmospheric state matching the wildfire state determined from satellite data in a process known as spinup. In this paper, we present a novel method for inferring the early stage history of a wildfire based on satellite active fire measurements. Here, inference of the fire history is performed in a probabilistic sense and physics is further incorporated through the use of training data derived from a coupled atmosphere–wildfire model.

     
    more » « less
  2. Abstract

    Past studies reported a drastic growth in the wildland–urban interface (WUI), the location where man‐made structures meet or overlap wildland vegetation. Fighting fire is difficult in the WUI due to the combination of wildland and structural fuels, and therefore, WUI areas are characterized by frequent damage and loss of structures from wildfires. Recent wildland fire policy has targeted fire prevention, evacuation planning, fuel treatment, and home hardening in WUI areas. Therefore, it is important to understand the occurrence of wildfire events relative to the location of the WUI. In this work, we have reported the occurrences of wildfires with respect to the WUI and quantified how much of the WUI is on complex topography in California, which intensifies fire behavior and complicates fire suppression. We have additionally analyzed the relative importance of WUI‐related parameters, such as housing density, vegetation density, and distance to wildfires, as well as topographic factors, such as slope, elevation, aspect, and surface roughness, on the occurrence of large and small wildfires and the burned area of large wildfires near the WUI. We found that a very small percentage of wildfire ignition points and large wildfire‐burned areas (>400 ha or 1000 acres) were located in the WUI areas. A small percentage of large wildfires were encountered in WUI (3%), and the WUI area accounted for only 4% of the area burned, which increased to 5% and 56%, respectively, outside WUI (5‐km buffer from WUI). Similarly, 66% of fires ignited outside WUI, whereas only 3.6% ignited within WUI. Results from this study have implications for fuel management and infrastructure hardening, as well as for fire suppression and community response.

     
    more » « less
  3. Abstract

    There is a need for nowcasting tools to provide timely and accurate updates on the location and rate of spread (ROS) of large wildfires, especially those impacting communities in the wildland urban interface. In this study, we demonstrate how fixed‐site weather radars can be used to fill this gap. Specifically, we develop and test a radar‐based fire‐perimeter tracking tool that leverages the tendency for local maxima in the radar reflectivity to be collocated with active fire perimeters. Reflectivity maxima are located using search radials from points inside a fire polygon, and perimeters are updated at intervals of ∼10 min. The algorithm is tested using publicly available Next Generation Weather Radar radar data for two large and destructive wildfires, the Camp and Bear Fires, both occurring in northern California, USA. The radar‐based fire perimeters are compared with available, albeit limited, satellite and airborne infrared observations, showing good agreement with conventional fire‐tracking tools. The radar data also provide insights into fire ROS, revealing the importance of long‐range spotting in generating ROS that exceeds conventional estimates. One limitation of this study is that high‐resolution fire perimeter validation data are sparsely available, precluding detailed error quantification for the radar estimates drawn from samples spanning a range of environmental conditions and radar configurations. Nevertheless, the radar tracking approach provides the basis for improved situational awareness during high‐impact fires.

     
    more » « less
  4. Abstract

    Predicting the evolution of burned area, smoke emissions, and energy release from wildfires is crucial to air quality forecasting and emergency response planning yet has long posed a significant scientific challenge. Here we compare predictions of burned area and fire radiative power from the coupled weather/fire‐spread model WRF‐Fire (Weather and Research Forecasting Tool with fire code), against simpler methods typically used in air quality forecasts. We choose the 2019 Williams Flats Fire as our test case due to a wealth of observations and ignite the fire on different days and under different configurations. Using a novel re‐gridding scheme, we compare WRF‐Fire's heat output to geostationary satellite data at 1‐hr temporal resolution. We also evaluate WRF‐Fire's time‐resolved burned area against high‐resolution imaging from the National Infrared Operations aircraft data. Results indicate that for this study, accounting for containment efforts in WRF‐Fire simulations makes the biggest difference in achieving accurate results for daily burned area predictions. When incorporating novel containment line inputs, fuel density increases, and fuel moisture observations into the model, the error in average daily burned area is 30% lower than persistence forecasting over a 5‐day forecast. Prescribed diurnal cycles and those resolved by WRF‐Fire simulations show a phase offset of at least an hour ahead of observations, likely indicating the need for dynamic fuel moisture schemes. This work shows that with proper configuration and input data, coupled weather/fire‐spread modeling has the potential to improve smoke emission forecasts.

     
    more » « less
  5. Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).

     
    more » « less