In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial ( Bacteria and Archaea ) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes.
more »
« less
Biogeochemical plumbing of pioneer mangrove intertidal flats in French Guiana
Migrating mudbanks are characteristic features of the vast Amazon-Guianas coastline along Northeastern South America. As illustrated by sites in French Guiana, consolidating mudfats that periodically transition to mangrove forest are permeated by extensive crustacean burrow systems, sometimes in isolation but more often in close association with morpho-sedimentary structures such as tidal pools and channels. Burrow structures are critical to mangrove growth. In this study, we evaluated the ways in which burrows act as complex conduits that plumb deposits for solute exchange with overlying water. We sampled burrows during low tide when irrigation is inhibited and burrow water rapidly becomes anoxic. The products of diagenetic reactions, for example: NH4+, N2, and Si(OH)4, build up with time, revealing sedimentary reaction rates and fluxes. When oxygenated, burrow walls are zones of intense coupled redox reactions such as nitrification-denitrifcation. Build-up often is lower in burrows connected directly to tidal pools where photosynthetic activity consumes remineralized nutrients, and burrows can remain periodically irrigated at low tide. During food, burrows, particularly those that connect tidal pools laterally to channels, can be rapidly flushed and oxygenated as channel water rises and then spreads across flats. Burrow flushing produces enhanced concentrations of nutrients within the leading edge of the flood as seawater moves progressively towards and into adjacent mangroves. Estimates of burrow volumes obtained from drone surveys together with burrow solute production rates allow upscaling of burrow-sourced metabolite fluxes; however, these are extremely variable due to variable burrow geometries, connections between burrows, pools, and channels, and burrow water residence times (oxygenation). The flushing of burrows during food results in a rectification of sediment-water fluxes shoreward and enhances the delivery of nutrients from the flats into adjacent mangroves and pools, presumably stimulating colonization and forest growth.
more »
« less
- Award ID(s):
- 2321875
- PAR ID:
- 10534851
- Editor(s):
- Reyer, C
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Regional Environmental Change
- Volume:
- 24
- ISSN:
- 1436-3798
- Page Range / eLocation ID:
- https://doi.org/10.1007/s10113-024-02272-x
- Subject(s) / Keyword(s):
- Guiana coast mudbank processes Crustacean burrow biogeochemistry Burrow solute fuxes Crustacean burrow-mangrove interactions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management.more » « less
-
Abstract Coastal wetlands are nourished by rivers and periodical tidal flows through complex, interconnected channels. However, in hydrodynamic models, channel dimensions with respect to model grid size and uncertainties in topography preclude the correct propagation of tidal and riverine signals. It is therefore crucial to enhance channel geomorphic connectivity and simplify sub‐channel features based on remotely sensed networks for practical computational applications. Here, we utilize channel networks derived from diverse remote sensing imagery as a baseline to build a ∼10 m resolution hydrodynamic model that covers the Wax Lake Delta and adjacent wetlands (∼360 km2) in coastal Louisiana, USA. In this richly gauged system, intensive calibrations are conducted with 18 synchronous field‐observations of water levels taken in 2016, and discharge data taken in 2021. We modify channel geometry, targeting realism in channel connectivity. The results show that a minimum channel depth of 2 m and a width of four grid elements (approximatively 40 m) are required to enable a realistic tidal propagation in wetland channels. The optimal depth for tidal propagation can be determined by a simplified cost function method that evaluates the competition between flow travel time and alteration of the volume of the channels. The integration of high spatial‐resolution models and remote sensing imagery provides a general framework to improve models performance in salt marshes, mangroves, deltaic wetlands, and tidal flats.more » « less
-
null (Ed.)Abstract. Mangrove forests are ecosystems that constitute a large portion of the world's coastline and span tidal zones below, between, and above thewaterline, and the ecosystem as a whole is defined by the health of these tidal microhabitats. However, we are only beginning to understand tidal-zone microbial biodiversity and the role of these microbiomes in nutrient cycling. While extensive research has characterized microbiomes inpristine vs. anthropogenically impacted mangroves, these have, largely, overlooked differences in tidal microhabitats (sublittoral, intertidal, andsupralittoral). Unfortunately, the small number of studies that have sought to characterize mangrove tidal zones have occurred in impacted biomes,making interpretation of the results difficult. Here, we characterized prokaryotic populations and their involvement in nutrient cycling across thetidal zones of a pristine mangrove within a Brazilian Environmental Protection Area of the Atlantic Forest. We hypothesized that the tidal zones inpristine mangroves are distinct microhabitats, which we defined as distinct regions that present spatial variations in the water regime and otherenvironmental factors, and as such, these are composed of different prokaryotic communities with distinct functional profiles. Samples werecollected in triplicate from zones below, between, and above the tidal waterline. Using 16S ribosomal RNA (rRNA) gene amplicon sequencing, we found distinctprokaryotic communities with significantly diverse nutrient-cycling functions, as well as specific taxa with varying contributions to functionalabundances between zones. Where previous research from anthropogenically impacted mangroves found the intertidal zone to have high prokaryoticdiversity and be functionally enriched in nitrogen cycling, we find that the intertidal zone from pristine mangroves has the lowest diversity and nofunctional enrichment, relative to the other tidal zones. The main bacterial phyla in all samples were Firmicutes, Proteobacteria,and Chloroflexi while the main archaeal phyla were Crenarchaeota and Thaumarchaeota. Our results differ slightly fromother studies where Proteobacteria is the main phyla in mangrove sediments and Firmicutes makes up only a small percentage ofthe communities. Salinity and organic matter were the most relevant environmental factors influencing these communities. Bacillaceae wasthe most abundant family at each tidal zone and showed potential to drive a large proportion of the cycling of carbon, nitrogen, phosphorus, andsulfur. Our findings suggest that some aspects of mangrove tidal zonation may be compromised by human activity, especially in the intertidal zone.more » « less
-
ABSTRACT Deltas are crucial for land building and ecological services due to their ability to store mineral sediment, carbon and potential pollutants. A decline in suspended sediment discharge in large rivers caused by the construction of mega‐dams might imperil deltaic flats and wetlands. However, there has not been clear evidence of a sedimentary shift in the downstream tidal flats that feed coastal wetlands and the intertidal zone with sediments. Here, integrated intertidal/subaqueous sediment samples, multi‐year bathymetries, fluvial and deltaic hydrological and sediment transport data in the Nanhui tidal flats and Nanhui Shoal in the Changjiang (Yangtze) Delta, one of the largest mega‐deltas in the world, were analysed to discern how sedimentary environments changed in response to the operations of the Three Gorges Dam. Results reveal that the coarser sediment fractions of surficial sediments in the subaqueous Nanhui Shoal increased between 2004 to 2021, and the overall grain size coarsened from 18.5 to 27.3 μm. Moreover, intertidal sediments in cores coarsened by 25% after the 1990s. During that period, the northern part of the Nanhui Shoal suffered large‐scale erosion, while the southern part accreted in recent decades. Reduced suspended sediment discharge of the Changjiang River combined with local resuspension of fine‐grained sediments are responsible for tidal flat erosion. This study found that the spatial pattern of grain‐size parameters has shifted from crossing the bathymetric isobaths to being parallel to them. Higher tide level and tidal range induced by sea‐level rise, an upstream increase in bed shear stress and larger waves likely further exacerbated erosion and sediment coarsening in deltaic flats. As a result, this sediment‐starved estuary coupled with sea‐level rise and artificial reclamations have enhanced the vulnerability of tidal flats in Changjiang Delta, this research is informative to the sedimentary shift of worldwide mega‐deltas.more » « less
An official website of the United States government

