skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life Cycle of Precipitating Cloud Systems from Synergistic Satellite Observations: Evolution of Macrophysical Properties and Precipitation Statistics from Geostationary Cloud Tracking and GPM Active and Passive Microwave Measurements
Abstract Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations.  more » « less
Award ID(s):
2324008
PAR ID:
10534879
Author(s) / Creator(s):
;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
25
Issue:
5
ISSN:
1525-755X
Page Range / eLocation ID:
789 to 805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance. 
    more » « less
  2. This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using observations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. microphysics was able to realistically simulate water vapor concentrations approaching the barrier, there was underprediction of cloud water content and rain rates offshore and over western slopes of terrain. We showed that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection between cloud water and rain-rate deficits. Evaluations of vertical hydrometeor mixing ratio profiles indicated that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or midlatitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted above 2 km, consistent with GMI vertical mixing ratio profiles. 
    more » « less
  3. Abstract Cloud seeding has been widely used for enhancing wintertime snowfall, particularly to augment water resources. This study examines microphysical responses to airborne glaciogenic seeding with silver iodide (AgI) during a specific case from the Seeded and Natural Orographic Wintertime Clouds: Idaho Experiment (SNOWIE) on 11 January 2017. Ground-based and airborne remote sensing and in situ measurements were employed to assess the impact of cloud seeding on cloud properties and precipitation formation. On 11th January, AgI propagated downwind along prevailing winds, and any potential ice and snow particles created from it were identified by ground-based radar as zigzag lines of enhanced reflectivity compared to background reflectivity. As the aircraft flew several times through these seeded clouds, microphysical properties within seeded clouds can be compared to those observed in unseeded clouds. The results indicate that seeded clouds exhibited significantly enhanced ice water content (IWC; reaching up to 0.20 g m−3) and precipitating-size (>400μm) ice particle concentrations (>7 L−1) relative to unseeded clouds. Additionally, seeded clouds exhibited a 30% decrease in the mean liquid water content (LWC) and cloud droplet concentrations, indicating efficient glaciation processes influenced by AgI. Precipitating snow development in seeded clouds occurred within 15–40 min following AgI release, marked by a transition from mixed-phase clouds with abundant supercooled liquid water (SLW) to ice clouds, with lidar-measured linear depolarization ratio (LDR) increasing to >0.3. These findings underscore the effectiveness of cloud seeding in enhancing snowfall by facilitating ice initiation and growth. Significance StatementThis study investigates the microphysical response of wintertime orographic clouds to airborne glaciogenic seeding, highlighting its role in enhancing precipitation. By introducing silver iodide (AgI) into clouds with supercooled liquid water, the seeding process facilitates ice particle formation, leading to increased snowfall. Through a detailed analysis of microphysical conditions using advanced in situ and remote sensing instruments, the study reveals enhanced ice water content and efficient conversion of liquid water to ice in seeded clouds. These findings provide critical insights into cloud-seeding efficacy, particularly in regions with abundant supercooled liquid water, offering a scientific foundation for enhancing snowpack in water-scarce mountainous areas. 
    more » « less
  4. null (Ed.)
    Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain. 
    more » « less
  5. Abstract. An ability to accurately detect convective regions isessential for initializing models for short-term precipitation forecasts.Radar data are commonly used to detect convection, but radars that providehigh-temporal-resolution data are mostly available over land, and the qualityof the data tends to degrade over mountainous regions. On the other hand,geostationary satellite data are available nearly anywhere and in near-realtime. Current operational geostationary satellites, the GeostationaryOperational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible andinfrared data even without vertical information of the convective system.Existing detection algorithms using visible and infrared data look forstatic features of convective clouds such as overshooting top or lumpy cloudtop surface or cloud growth that occurs over periods of 30 min to anhour. This study represents a proof of concept that artificial intelligence(AI) is able, when given high-spatial- and high-temporal-resolution data fromGOES-16, to learn physical properties of convective clouds and automate thedetection process. A neural network model with convolutional layers is proposed to identifyconvection from the high-temporal resolution GOES-16 data. The model takesfive temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) asinputs and produces a map of convective regions. In order to provideproducts comparable to the radar products, it is trained against Multi-RadarMulti-Sensor (MRMS), which is a radar-based product that uses a rathersophisticated method to classify precipitation types. Two channels fromGOES-16, each related to cloud optical depth (channel 2) and cloud topheight (channel 14), are expected to best represent features of convectiveclouds: high reflectance, lumpy cloud top surface, and low cloud toptemperature. The model has correctly learned those features of convectiveclouds and resulted in a reasonably low false alarm ratio (FAR) and highprobability of detection (POD). However, FAR and POD can vary depending onthe threshold, and a proper threshold needs to be chosen based on thepurpose. 
    more » « less