skip to main content


This content will become publicly available on May 1, 2025

Title: Life Cycle of Precipitating Cloud Systems from Synergistic Satellite Observations: Evolution of Macrophysical Properties and Precipitation Statistics from Geostationary Cloud Tracking and GPM Active and Passive Microwave Measurements
Abstract

Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations.

 
more » « less
Award ID(s):
2324008
PAR ID:
10534879
Author(s) / Creator(s):
;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
25
Issue:
5
ISSN:
1525-755X
Page Range / eLocation ID:
789 to 805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Clouds observed by the airborne High‐Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) were classified into twelve categories, based on their convective/stratiform nature. Dimensional and convective cloud properties were analyzed in three climatic regions: The subtropical easterlies off the coast of California, the Southern Ocean, and the tropics surrounding Central America. The convective properties of the stratocumulus clouds in the subtropical easterlies are closely related to the degree of boundary layer decoupling. In regions of strong boundary layer coupling, convectivity and updrafts in the clouds are weak and precipitation is light. In regions where the boundary layer is more decoupled, convective properties increase together with cloud top altitudes and cloud depth. Cloud properties of stratocumulus and cumulus clouds over the Southern Ocean show similarities to those observed in the subtropics, but overall they are less convective, indicating a strongly coupled boundary layer. Sea surface temperatures are much lower and the development of clouds is driven by transient synoptic conditions rather than zonal ocean temperature gradients. Clouds observed over the tropical oceans are much more convective in nature. As in the two other regions, they are mostly shallow, but clouds in regions with high sea surface temperatures have high convectivity and reflectivity values and stronger updrafts. Some of them grow to extreme depths (>14 km) and widths (>500 km). They have strong and large updraft regions and are heavily precipitating throughout their life cycle as they transition from the convective to the stratiform stage.

     
    more » « less
  2. null (Ed.)
    Abstract This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance. 
    more » « less
  3. This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using observations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. microphysics was able to realistically simulate water vapor concentrations approaching the barrier, there was underprediction of cloud water content and rain rates offshore and over western slopes of terrain. We showed that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection between cloud water and rain-rate deficits. Evaluations of vertical hydrometeor mixing ratio profiles indicated that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or midlatitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted above 2 km, consistent with GMI vertical mixing ratio profiles.

     
    more » « less
  4. Abstract

    Satellites bring opportunities to quantify precipitation amount and distribution over the globe, critical to understanding how the Earth system works. The amount and spatial distribution of oceanic precipitation from the latest versions (V07 and the previous version) of the Global Precipitation Measurement (GPM)Core Observatoryinstruments and selected members of the constellation of passive microwave sensors are quantified and compared with other products such as the Global Precipitation Climatology Project (GPCP V3.2); the MergedCloudSat, TRMM, and GPM (MCTG) climatology; and ERA5. Results show that GPM V07 products have a higher precipitation rate than the previous version, except for the radar-only product. Within ∼65°S–65°N, covered by all of the instruments, this increase ranges from about 9% for the combined radar–radiometer product to about 16% for radiometer-only products. While GPM precipitation products still show lower mean precipitation rate than MCTG (except over the tropics and Arctic Ocean), the V07 products (except radar-only) are generally more consistent with MCTG and GPCP V3.2 than V05. Over the tropics (25°S–25°N), passive microwave sounders show the highest precipitation rate among all of the precipitation products studied and the highest increase (∼19%) compared to their previous version. Precipitation products are least consistent in midlatitude oceans in the Southern Hemisphere, displaying the largest spread in mean precipitation rate and location of latitudinal peak precipitation. Precipitation products tend to show larger spread over regions with low and high values of sea surface temperature and total precipitable water. The analysis highlights major discrepancies among the products and areas for future research.

     
    more » « less
  5. null (Ed.)
    Abstract The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft. A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain. 
    more » « less