Building on the framework of Zhang & Shu [1,2], we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angular moments of a phase space distribution function f. The two-moment model is closed using algebraic moment closures; e.g., as proposed by Cernohorsky & Bludman [3] and Banach & Larecki [4]. Variations of this model have recently been used to simulate neutrino transport in nuclear astrophysics applications, including core-collapse supernovae and compact binary mergers. We employ the discontinuous Galerkin (DG) method for spatial discretization (in part to capture the asymptotic diffusion limit of the model) combined with implicit-explicit (IMEX) time integration to stably bypass short timescales induced by frequent interactions between particles and the background. Appropriate care is taken to ensure the method preserves strict algebraic bounds on the evolved moments (particle density and flux) as dictated by Pauli’s exclusion principle, which demands a bounded distribution function (i.e., f ∈ [0, 1]). This realizability-preserving scheme combines a suitable CFL condition, a realizability- enforcing limiter, a closure procedure based on Fermi-Dirac statistics, and an IMEX scheme whose stages can be written as a convex combination of forward Euler steps combined with a backward Euler step. The IMEX scheme is formally only first-order accurate, but works well in the diffusion limit, and — without interactions with the background — reduces to the optimal second-order strong stability-preserving explicit Runge-Kutta scheme of Shu & Osher [5]. Numerical results demonstrate the realizability-preserving properties of the scheme. We also demonstrate that the use of algebraic moment closures not based on Fermi-Dirac statistics can lead to unphysical moments in the context of fermion transport.
more »
« less
thornado-transport: IMEX schemes for two-moment neutrino transport respecting Fermi-Dirac statistics
We develop implicit-explicit (IMEX) schemes for neutrino transport in a background material in the context of a two-moment model that evolves the angular moments of a neutrino phase-space distribution function. Considering the upper and lower bounds that are introduced by Pauli’s exclusion principle on the moments, an algebraic moment closure based on Fermi-Dirac statistics and a convex-invariant time integrator both are demanded. A finite-volume/first-order discontinuous Galerkin(DG) method is used to illustrate how an algebraic moment closure based on Fermi-Dirac statistics is needed to satisfy the bounds. Several algebraic closures are compared with these bounds in mind, and the Cernohorsky and Bludman closure, which satisfies the bounds, is chosen for our IMEX schemes. For the convex-invariant time integrator, two IMEX schemes named PD-ARS have been proposed. PD-ARS denotes a convex-invariant IMEX Runge-Kutta scheme that is high-order accurate in the streaming limit, and works well in the diffusion limit. Our two PD-ARS schemes use second- and third-order, explicit, strong-stability-preserving Runge-Kutta methods as their explicit part, respectively, and therefore are second- and third-order accurate in the streaming limit, respectively. The accuracy and convex-invariance of our PD-ARS schemes are demonstrated in the numerical tests with a third-order DG method for spatial discretization and a simple Lax-Friedrichs flux. The method has been implemented in our high-order neutrino-radiation hydrodynamics (thornado) toolkit. We show preliminary results employing tabulated neutrino opacities.
more »
« less
- Award ID(s):
- 1806692
- PAR ID:
- 10534913
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of physics Conference series
- ISSN:
- 1742-6588
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the implementation of a two-moment-based general-relativistic multigroup radiation transport module in theGeneral-relativisticmultigridnumerical (Gmunu) code. On top of solving the general-relativistic magnetohydrodynamics and the Einstein equations with conformally flat approximations, the code solves the evolution equations of the zeroth- and first-order moments of the radiations in the Eulerian-frame. An analytic closure relation is used to obtain the higher order moments and close the system. The finite-volume discretization has been adopted for the radiation moments. The advection in spatial space and frequency-space are handled explicitly. In addition, the radiation–matter interaction terms, which are very stiff in the optically thick region, are solved implicitly. The implicit–explicit Runge–Kutta schemes are adopted for time integration. We test the implementation with a number of numerical benchmarks from frequency-integrated to frequency-dependent cases. Furthermore, we also illustrate the astrophysical applications in hot neutron star and core-collapse supernovae modelings, and compare with other neutrino transport codes.more » « less
-
We consider high-order discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order and a high-order parabolic update using another limiting operator. The proposed technique, which is agnostic to the space discretization, allows one to optimize the time step restrictions induced by the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff ordinary differential equations and nonlinear conservation equations.more » « less
-
We design pairs of six-stage, third-order, alternating implicit Runge–Kutta (RK) schemes that can be used to integrate in time two stiff operators by an operator-splitting technique. We also design for each pair a companion explicit RK scheme to be used for a third, nonstiff oper- ator in an implicit-explicit (IMEX) fashion. The main application we have in mind is (non)linear parabolic problems, where the two stiff operators represent diffusion processes (for instance, in two spatial directions) and the nonstiff operator represents (non)linear transport. We identify necessary conditions for linear sectorial A( )-stability by considering a scalar ODE with two (complex) ei- genvalues lying in some fixed cone of the half-complex plane with nonpositive real part. We show numerically that it is possible to achieve A(0)-stability when combining two operators with negative eigenvalues, irrespective of their relative magnitude. Finally, we show by numerical examples includ- ing two-dimensional nonlinear transport problems discretized in space using finite elements that the proposed schemes behave well.more » « less
-
A computationally efficient method for calculating the transport of neutrino flavor in simulations is to use angular moments of the neutrino one-body reduced density matrix, i.e., “quantum moments.” As with any moment-based radiation transport method, a closure is needed if the infinite tower of moment evolution equations is truncated. We derive a general parametrization of a quantum closure and the limits the parameters must satisfy in order for the closure to be physical. We then derive from multiangle calculations the evolution of the closure parameters in two test cases which we then progressively insert into a moment evolution code and show how the parameters affect the moment results until the full multiangle results are reproduced. This parametrization paves the way to setting prescriptions for genuine quantum closures adapted to neutrino transport in a range of situations. Published by the American Physical Society2025more » « less
An official website of the United States government

