skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Realizability-preserving DG-IMEX method for the two-moment model of fermion transport
Building on the framework of Zhang & Shu [1,2], we develop a realizability-preserving method to simulate the transport of particles (fermions) through a background material using a two-moment model that evolves the angular moments of a phase space distribution function f. The two-moment model is closed using algebraic moment closures; e.g., as proposed by Cernohorsky & Bludman [3] and Banach & Larecki [4]. Variations of this model have recently been used to simulate neutrino transport in nuclear astrophysics applications, including core-collapse supernovae and compact binary mergers. We employ the discontinuous Galerkin (DG) method for spatial discretization (in part to capture the asymptotic diffusion limit of the model) combined with implicit-explicit (IMEX) time integration to stably bypass short timescales induced by frequent interactions between particles and the background. Appropriate care is taken to ensure the method preserves strict algebraic bounds on the evolved moments (particle density and flux) as dictated by Pauli’s exclusion principle, which demands a bounded distribution function (i.e., f ∈ [0, 1]). This realizability-preserving scheme combines a suitable CFL condition, a realizability- enforcing limiter, a closure procedure based on Fermi-Dirac statistics, and an IMEX scheme whose stages can be written as a convex combination of forward Euler steps combined with a backward Euler step. The IMEX scheme is formally only first-order accurate, but works well in the diffusion limit, and — without interactions with the background — reduces to the optimal second-order strong stability-preserving explicit Runge-Kutta scheme of Shu & Osher [5]. Numerical results demonstrate the realizability-preserving properties of the scheme. We also demonstrate that the use of algebraic moment closures not based on Fermi-Dirac statistics can lead to unphysical moments in the context of fermion transport.  more » « less
Award ID(s):
1806692
PAR ID:
10534957
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of computational physics
ISSN:
0021-9991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop implicit-explicit (IMEX) schemes for neutrino transport in a background material in the context of a two-moment model that evolves the angular moments of a neutrino phase-space distribution function. Considering the upper and lower bounds that are introduced by Pauli’s exclusion principle on the moments, an algebraic moment closure based on Fermi-Dirac statistics and a convex-invariant time integrator both are demanded. A finite-volume/first-order discontinuous Galerkin(DG) method is used to illustrate how an algebraic moment closure based on Fermi-Dirac statistics is needed to satisfy the bounds. Several algebraic closures are compared with these bounds in mind, and the Cernohorsky and Bludman closure, which satisfies the bounds, is chosen for our IMEX schemes. For the convex-invariant time integrator, two IMEX schemes named PD-ARS have been proposed. PD-ARS denotes a convex-invariant IMEX Runge-Kutta scheme that is high-order accurate in the streaming limit, and works well in the diffusion limit. Our two PD-ARS schemes use second- and third-order, explicit, strong-stability-preserving Runge-Kutta methods as their explicit part, respectively, and therefore are second- and third-order accurate in the streaming limit, respectively. The accuracy and convex-invariance of our PD-ARS schemes are demonstrated in the numerical tests with a third-order DG method for spatial discretization and a simple Lax-Friedrichs flux. The method has been implemented in our high-order neutrino-radiation hydrodynamics (thornado) toolkit. We show preliminary results employing tabulated neutrino opacities. 
    more » « less
  2. We consider high-order discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order and a high-order parabolic update using another limiting operator. The proposed technique, which is agnostic to the space discretization, allows one to optimize the time step restrictions induced by the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff ordinary differential equations and nonlinear conservation equations. 
    more » « less
  3. A computationally efficient method for calculating the transport of neutrino flavor in simulations is to use angular moments of the neutrino one-body reduced density matrix, i.e., “quantum moments.” As with any moment-based radiation transport method, a closure is needed if the infinite tower of moment evolution equations is truncated. We derive a general parametrization of a quantum closure and the limits the parameters must satisfy in order for the closure to be physical. We then derive from multiangle calculations the evolution of the closure parameters in two test cases which we then progressively insert into a moment evolution code and show how the parameters affect the moment results until the full multiangle results are reproduced. This parametrization paves the way to setting prescriptions for genuine quantum closures adapted to neutrino transport in a range of situations. Published by the American Physical Society2025 
    more » « less
  4. Abstract An invariant domain preserving arbitrary Lagrangian-Eulerian method for solving non-linear hyperbolic systems is developed. The numerical scheme is explicit in time and the approximation in space is done with continuous finite elements. The method is made invariant domain preserving for the Euler equations using convex limiting and is tested on various benchmarks. 
    more » « less
  5. Meka, Raghu (Ed.)
    In the d-dimensional turnstile streaming model, a frequency vector 𝐱 = (𝐱(1),…,𝐱(n)) ∈ (ℝ^d)ⁿ is updated entry-wisely over a stream. We consider the problem of f-moment estimation for which one wants to estimate f(𝐱)=∑_{v ∈ [n]}f(𝐱(v)) with a small-space sketch. A function f is tractable if the f-moment can be estimated to within a constant factor using polylog(n) space. The f-moment estimation problem has been intensively studied in the d = 1 case. Flajolet and Martin estimate the F₀-moment (f(x) = 1 (x > 0), incremental stream); Alon, Matias, and Szegedy estimate the L₂-moment (f(x) = x²); Indyk estimates the L_α-moment (f(x) = |x|^α), α ∈ (0,2]. For d ≥ 2, Ganguly, Bansal, and Dube estimate the L_{p,q} hybrid moment (f:ℝ^d → ℝ,f(x) = (∑_{j = 1}^d |x_j|^p)^q), p ∈ (0,2],q ∈ (0,1). For tractability, Bar-Yossef, Jayram, Kumar, and Sivakumar show that f(x) = |x|^α is not tractable for α > 2. Braverman, Chestnut, Woodruff, and Yang characterize the class of tractable one-variable functions except for a class of nearly periodic functions. In this work we present a simple and generic scheme to construct sketches with the novel idea of hashing indices to Lévy processes, from which one can estimate the f-moment f(𝐱) where f is the characteristic exponent of the Lévy process. The fundamental Lévy-Khintchine representation theorem completely characterizes the space of all possible characteristic exponents, which in turn characterizes the set of f-moments that can be estimated by this generic scheme. The new scheme has strong explanatory power. It unifies the construction of many existing sketches (F₀, L₀, L₂, L_α, L_{p,q}, etc.) and it implies the tractability of many nearly periodic functions that were previously unclassified. Furthermore, the scheme can be conveniently generalized to multidimensional cases (d ≥ 2) by considering multidimensional Lévy processes and can be further generalized to estimate heterogeneous moments by projecting different indices with different Lévy processes. We conjecture that the set of tractable functions can be characterized using the Lévy-Khintchine representation theorem via what we called the Fourier-Hahn-Lévy method. 
    more » « less