skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 1, 2025

Title: Strengthening graduate education and addressing environmental challenges through solutions-oriented partnerships and interdisciplinary training
Abstract

Graduate students across disciplines are eager for experiential training that enables them to address real-world environmental challenges. Simultaneously, communities across the world face numerous environmental challenges, including increased frequency of extreme heat in summer and poor air quality, and could benefit from the expertise and engagement of graduate students with the requisite skills and interests to address these challenges. In this paper we bring together lessons learned from three interdisciplinary graduate training programs focused on preparing graduate students to contribute to urban environmental solutions by working in partnerships with non-academic organizations. We discuss the multiple elements required for partnerships to be mutually beneficial, including using a T-shaped approach to training that incorporates bothdepthandbreadthwhile making strong efforts to broaden participation. We share lessons with the goal of enhancing graduate programs to improve training of students to address urban environmental challenges globally. This training aligns with the United Nations Sustainable Development Goal 17, “Partnership for the Goals,” which aims to achieve sustainable development goals through partnerships among entities.

 
more » « less
Award ID(s):
2022036
NSF-PAR ID:
10534975
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science and Business Media LLC
Date Published:
Journal Name:
Sustainable Earth Reviews
Volume:
7
Issue:
1
ISSN:
2520-8748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
    more » « less
  2. Abstract

    Historically, research disciplines have successfully operated independently. However, the emergence of transdisciplinary research has led to convergence methodologies, resulting in groundbreaking discoveries. Despite the benefits, graduate programs face challenges in implementing transdisciplinary research and preparing students for real-world collaboration across diverse disciplines and experience levels. We propose a convergence training framework integrating project-based learning, training modules, and collaborative teaming to address this. This approach, tested in a multi-institutional workshop, proved effective in bridging expertise gaps and fostering successful convergence learning experiences in computational biointerface (material–biology interface) research. Here, biointerface research focuses on control of biomolecular interactions with technologically relevant material surfaces, which is a critical component of biotechnology and engineering applications. Positive outcomes, including conference presentations and published models, endorse the framework's application in graduate curricula, particularly for students engaging in transdisciplinary collaboration.

     
    more » « less
  3. Abstract

    Interdisciplinary teams are on the rise as scientists attempt to address complex environmental issues. While the benefits of team science approaches are clear, researchers often struggle with its implementation, particularly for new team members. The challenges of large projects often weigh on the most vulnerable members of a team: trainees, including undergraduate students, graduate students, and post‐doctoral researchers. Trainees on big projects have to navigate their role on the team, with learning project policies, procedures, and goals, all while also training in key scientific tasks such as co‐authoring papers. To address these challenges, we created and participated in a project‐specific, graduate‐level team science course. The purposes of this course were to: (1) introduce students to the goals of the project, (2) build trainees' understanding of how big projects operate, and (3) allow trainees to explore how their research interests dovetailed with the overall project. Additionally, trainees received training regarding: (1) diversity, equity & inclusion, (2) giving and receiving feedback, and (3) effective communication. Onboarding through the team science course cultivated psychological safety and a collaborative student community across disciplines and institutions. Thus, we recommend a team science course for onboarding students to big projects to help students establish the skills necessary for collaborative research. Project‐based team science classes can benefit student advancement, enhance the productivity of the project, and accelerate the discovery of solutions to ecological issues by building community, establishing a shared project vocabulary, and building a workforce with collaborative skills to better answer ecological research questions.

     
    more » « less
  4. Abstract

    With the ever‐changing advances in the aquatic sciences, more efficient coordination of projects and cooperation between scientists in different countries is needed. The inclusion of scientists across the globe to solve complex ecosystem questions requires effective international collaborations across disciplines. One way to advance this process is through international research collaborations (IRCs) which include the next generation of scientists: graduate students. Through the use of lessons learned from the Limnology and Oceanography Research Exchange (LOREX) program, we provide survey and focus group data to show the benefits and challenges of IRCs and exchanges. We also provide recommendations for participants for future successful IRC programs like LOREX. Many opportunities exist for providing effective professional development for graduate students to ensure that they are successful in incorporating international research in their future careers. Creating programs like LOREX for graduate students could go a long way toward bridging the scientific gaps and improving mutual understanding between countries contributing to diversity in the broadest sense.

     
    more » « less
  5. Abstract

    Systems‐level approaches are required for addressing the world's major challenges at the food–energy–water nexus. Taking on complex issues, such as rising food insecurity, malnutrition, and food waste, concomitant with unprecedented levels of stress on environmental systems, will necessitate that future scholars and decision makers be prepared through transdisciplinary student training. However, in higher education, students tend to be siloed within their discipline. In this study, we present a case for the development of transdisciplinary graduate student training based on an inter‐institutional and fully remote group of graduate students who assembled during the COVID‐19 pandemic to address the issue of food waste. We use our wide‐ranging disciplinary backgrounds, high‐performance transdisciplinary team training, and stakeholder feedback to develop and conduct a weeklong social media campaign to share educational resources for reducing household food waste. This work offers valuable lessons learned through the student's lens to those seeking to create or improve future transdisciplinary training methods for tackling food waste and other global grand challenges. Key insights from this process include the importance of accountability and open communication when conducting collaborative teamwork, the utility of various mobile and online tools for effectively facilitating remote group work, and the vital role of transdisciplinarity in devising creative solutions.

     
    more » « less