This content will become publicly available on April 23, 2025
- Award ID(s):
- 2154593
- PAR ID:
- 10535005
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Synthesis & Catalysis
- Volume:
- 366
- Issue:
- 8
- ISSN:
- 1615-4150
- Page Range / eLocation ID:
- 1820 to 1826
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step.more » « less
-
Abstract The first RhI‐catalyzed, directed decarbonylative C2−H alkenylation of imidazoles with readily available alkenyl carboxylic acids is reported. The reaction proceeds in a highly regio‐ and stereoselective manner, providing efficient access to C2‐alkenylated imidazoles that are generally inaccessible by known C−H alkenylation methods. This transformation accommodates a wide range of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, and diversely decorated imidazoles with high functional group compatibility. The presence of a removable pyrimidine directing group and the use of a bidentate phosphine ligand are pivotal to the success of the catalytic reaction. This process is also suitable for benzimidazoles. Importantly, the scalability and diversification of the products highlight the potential of this protocol in practical applications. Detailed experimental and computational studies provide important insights into the underlying reaction mechanism.
-
Abstract A Rh(I)‐catalyzed C6‐selective C−H arylation of 2‐pyridones with inexpensive, readily available, safe and structurally diverse aryl carboxylic acids with the aid of a pyridine directing group is developed. This decarbonylative arylation protocol features an easy‐to‐handle catalytic system, and is amenable to diversely substituted 2‐pyridones and aryl carboxylic acids. It allows access to a wide range of C6‐arylated 2‐pyridones, including those that are difficult to prepare using conventional C−H arylation processes. The method tolerates various electron‐neutral, electron‐rich and electron‐deficient functional groups, and affords the products in 41–91% yields.
magnified image -
Abstract Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C‐O/C‐H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late‐stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper–aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.
-
Abstract Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C‐O/C‐H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late‐stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper–aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.