Abstract We present the first catalog of fast radio burst (FRB) host galaxies from CHIME/FRB Outriggers, selected uniformly in the radio and the optical by localizing 81 new bursts to 2″ × ∼ 60″ accuracy using CHIME and the k’niʔatn k’l ⌣ stk’masqt Outrigger station, located 66 km from CHIME. Of the 81 localized bursts, we use the probabilistic association of transients to their hosts algorithm to securely identify 21 new FRB host galaxies, and compile spectroscopic redshifts for 19 systems, 15 of which are newly obtained via spectroscopic observations. The most nearby source is FRB 20231229A, at a distance of 90 Mpc. One burst in our sample is from a previously reported repeating source in a galaxy merger (FRB 20190303A). Three new FRB host galaxies (FRBs 20230203A, 20230703A, and 20231206A) are found toward X-ray and optically selected galaxy clusters, potentially doubling the sample of known galaxy cluster FRBs. A search for radio counterparts reveals that FRB 20231128A is associated with a luminous persistent radio source (PRS) candidate with high significance (Pcc ∼ 10−2). If its compactness is confirmed, it would be the nearest known compact PRS atz= 0.1079. Our catalog significantly increases the statistics of the Macquart relation at low redshifts (z < 0.2). In the near future, the completed CHIME/FRB Outriggers array will produce hundreds of FRBs localized with very long baseline interferometry (VLBI). This will significantly expand the known sample and pave the way for future telescopes relying on VLBI for FRB localization. 
                        more » 
                        « less   
                    
                            
                            H i, FRB, What’s Your z: The First FRB Host Galaxy Redshift from Radio Observations
                        
                    
    
            Abstract Identification and follow-up observations of the host galaxies of fast radio bursts (FRBs) not only help us understand the environments in which the FRB progenitors reside, but also provide a unique way of probing the cosmological parameters using the dispersion measures (DMs) of FRBs and distances to their origin. A fundamental requirement is an accurate distance measurement to the FRB host galaxy, but for some sources viewed through the Galactic plane, optical/near-infrared spectroscopic redshifts are extremely difficult to obtain due to dust extinction. Here we report the first radio-based spectroscopic redshift measurement for an FRB host galaxy, through detection of its neutral hydrogen (Hi) 21 cm emission using MeerKAT observations. We obtain an Hi–based redshift ofz= 0.0357 ± 0.0001 for the host galaxy of FRB 20230718A, an apparently nonrepeating FRB detected in the Commensal Real-time ASKAP Fast Transients survey and localized at a Galactic latitude of –0.°367. Our observations also reveal that the FRB host galaxy is interacting with a nearby companion, which is evident from the detection of an Hibridge connecting the two galaxies. A subsequent optical spectroscopic observation confirmed an FRB host galaxy redshift of 0.0359 ± 0.0004. This result demonstrates the value of Hito obtain redshifts of FRBs at low Galactic latitudes and redshifts. Such nearby FRBs whose DMs are dominated by the Milky Way can be used to characterize these components and thus better calibrate the remaining cosmological contribution to dispersion for more distant FRBs that provide a strong lever arm to examine the Macquart relation between cosmological DM and redshift. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10535026
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 962
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We present the host galaxies of four apparently nonrepeating fast radio bursts (FRBs), FRB 20181223C, FRB 20190418A, FRB 20191220A, and FRB 20190425A, reported in the first Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) catalog. Our selection of these FRBs is based on a planned hypothesis testing framework where we search all CHIME/FRB Catalog-1 events that have low extragalactic dispersion measure (<100 pc cm−3), with high Galactic latitude (∣b∣ > 10°) and saved baseband data. We associate the selected FRBs with galaxies with moderate to high star formation rates located at redshifts between 0.027 and 0.071. We also search for possible multimessenger counterparts, including persistent compact radio and gravitational-wave sources, and find none. Utilizing the four FRB hosts from this study, along with the hosts of 14 published local Universe FRBs (z< 0.1) with robust host association, we conduct an FRB host demographics analysis. We find all 18 local Universe FRB hosts in our sample to be spirals (or late-type galaxies), including the host of FRB 20220509G, which was previously reported to be elliptical. Using this observation, we scrutinize proposed FRB source formation channels and argue that core-collapse supernovae are likely the dominant channel to form FRB sources. Moreover, we infer no significant difference in the host properties of repeating and apparently nonrepeating FRBs in our local Universe FRB host sample. Finally, we find the burst rates of these four apparently nonrepeating FRBs to be consistent with those of the sample of localized repeating FRBs observed by CHIME/FRB. Therefore, we encourage further monitoring of these FRBs with more sensitive radio telescopes.more » « less
- 
            The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium, which is assumed to dominate the total extragalactic dispersion. While the host galaxy contributions to dispersion measure (DM) appear to be small for most FRBs, in at least one case there is evidence for an extreme magneto-ionic local environment and a compact persistent radio source. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific star formation rate at a redshift z=0.241±0.001. The estimated host galaxy DM~≈903+72−111~pc~cm−3, nearly an order of magnitude higher than the average of FRB host galaxies, far exceeds the DM contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host galaxy identifications. The dense FRB environment and the association with a compact persistent radio source may point to a distinctive origin or an earlier evolutionary stage for this FRB source.more » « less
- 
            Abstract A sample of 14 FRBs with measured redshifts and scattering times is used to assess contributions to dispersion and scattering from the intergalactic medium (IGM), galaxy halos, and the disks of host galaxies. The IGM and galaxy halos contribute significantly to dispersion measures (DMs) but evidently not to scattering, which is then dominated by host galaxies. This enables the usage of scattering times for estimating DM contributions from host galaxies and also for a combined scattering–dispersion redshift estimator. Redshift estimation is calibrated using the scattering of Galactic pulsars after taking into account different scattering geometries for Galactic and intergalactic lines of sight. The DM-only estimator has a bias of ∼0.1 and rms error of ∼0.15 in the redshift estimate for an assumed ad hoc value of 50 pc cm−3for the host galaxy’s DM contribution. The combined redshift estimator shows less bias by a factor of 4 to 10 and a 20%–40% smaller rms error. We find that values for the baryonic fraction of the ionized IGMfigm≃ 0.85 ± 0.05 optimize redshift estimation using dispersion and scattering. Our study suggests that 2 of the 14 candidate galaxy associations (FRB 20190523A and FRB 20190611B) should be reconsidered.more » « less
- 
            Abstract The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium 1 , which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs 2 , in at least one case there is evidence for an extreme magneto-ionic local environment 3,4 and a compact persistent radio source 5 . Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately $${903}_{-111}^{+72}$$ 903 − 111 + 72 parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies 2,6 , far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    