Abstract Multifunctionality as a paradigm requires materials exhibiting multiple superior properties. Integrating second‐order optical nonlinearity and large bandgap with piezoelectricity can, for example, enable broadband, strain‐tunable photonics. Though very different phenomena at distinct frequencies, both second‐order optical nonlinearity and piezoelectricity are third‐rank polar tensors present only in acentric crystal structures. However, simultaneously enhancing both phenomena is highly challenging since it involves competing effects with tradeoffs. Recently, a large switchable ferroelectric polarization of ≈80 μC cm−2was reported in Zn1‐xMgxO films. Here, ferroelectric Zn1‐xMgxO is demonstrated to be a platform that hosts simultaneously a 30% increase in the electronic bandgap, a 50% enhancement in the second harmonic generation (SHG) coefficients, and a near 200% improvement in the piezoelectric coefficients over pure ZnO. These enhancements are shown to be due to a 400% increase in the electronic anharmonicity and a ≈200% decrease in the ionic anharmonicity with Mg substitution. Precisely controllable periodic ferroelectric domain gratings are demonstrated down to 800 nm domain width, enabling ultraviolet quasi‐phase‐matched optical harmonic generation as well as domain‐engineered piezoelectric devices.
more »
« less
Strain phase equilibria and phase‐field method of ferroelectric polydomain: A case study of monoclinic K x Na 1 − x NbO 3 thin films
Abstract Knowledge of the thermodynamic equilibria and domain structures of ferroelectrics is critical to establishing their structure–property relationships that underpin their applications from piezoelectric devices to nonlinear optics. Here, we establish the strain condition for strain phase separation and polydomain formation and analytically predict the corresponding domain volume fractions and wall orientations of, relatively low symmetry and theoretically more challenging, monoclinic ferroelectric thin films by integrating thermodynamics of ferroelectrics, strain phase equilibria theory, microelasticity, and phase‐field method. Using monoclinic KxNa1 − xNbO3(0.5 < x < 1.0) thin films as a model system, we establish the polydomain strain–strain phase diagrams, from which we identify two types of monoclinic polydomain structures. The analytically predicted strain conditions of formation, domain volume fractions, and domain wall orientations for the two polydomain structures are consistent with phase‐field simulations and in good agreement with experimental results in the literature. The present study demonstrates a general, powerful analytical theoretical framework to predict the strain phase equilibria and domain wall orientations of polydomain structures applicable to both high‐ and low‐symmetry ferroelectrics and provide fundamental insights into the equilibrium domain structures of ferroelectric KxNa1 − xNbO3thin films that are of technology relevance for lead‐free dielectric and piezoelectric applications.
more »
« less
- PAR ID:
- 10535143
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 107
- Issue:
- 12
- ISSN:
- 0002-7820
- Format(s):
- Medium: X Size: p. 7692-7710
- Size(s):
- p. 7692-7710
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Temperature‐ and electric‐field‐induced structural transitions in a polydomain ferroelectric can have profound effects on its electrothermal susceptibilities. Here, the role of such ferroelastic domains on the pyroelectric and electrocaloric response is experimentally investigated in thin films of the tetragonal ferroelectric PbZr0.2Ti0.8O3. By utilizing epitaxial strain, a rich set of ferroelastic polydomain states spanning a broad thermodynamic phase space are stabilized. Using temperature‐dependent scanning‐probe microscopy, X‐ray diffraction, and high‐frequency phase‐sensitive pyroelectric measurements, the propensity of domains to reconfigure under a temperature perturbation is quantitatively studied. In turn, the “extrinsic” contributions to pyroelectricity exclusively due to changes between the ferroelastic domain population is elucidated as a function of epitaxial strain. Further, using highly sensitive thin‐film resistive thermometry, direct electrocaloric temperature changes are measured on these polydomain thin films for the first time. The results demonstrate that temperature‐ and electric‐field‐driven domain interconversion under compressive strain diminish both the pyroelectric and the electrocaloric effects, while both these susceptibilities are enhanced due to the exact‐opposite effect from the extrinsic contributions under tensile strain.more » « less
-
Abstract Ferroelectric nanotubes offer intriguing opportunities for stabilizing exotic polarization domains and achieving new or enhanced functionalities by tailoring the complex interplay among the geometry, surface effects, crystal symmetry, and more. Here, phase‐field simulations to predict the room‐temperature equilibrium polarization domain structure in (001)pcPbZr0.52Ti0.48O3(PZT) nanotubes are used (pseudocubic (pc)). The simulations incorporate the influence of surface‐tension‐induced strains, which have been ignored in existing computational studies. It is found that (001)pcPZT nanotubes can host a unique class of topological polarization domain structures comprising non‐planar flux‐closures and anti‐flux‐closures that are inaccessible with ferroelectrics of planar geometry (e.g., thin‐films, nanodots). It is shown that surface‐tension‐induced strain is significantly enhanced in thin‐walled nanotubes and thereby can lead to noticeable modulation of the flux closures. Domain stability map as a function of the nanotube wall thickness and height is established. The results provide a basis for geometrical engineering of domain structures and associated functional (e.g., piezoelectric, electrocaloric) responses in ferroelectric nanotubes.more » « less
-
Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.more » « less
-
The extraordinary performances of phase-coexisting ferroelectrics are significantly affected by not only the phase constitution but also the motion of domain walls. The study on the role of phase coexistence in the formation of ferroelectric and ferroelastic domain microstructures is of great importance to explain the enhanced piezoelectric properties. In situ high-energy diffraction and the Rayleigh law are utilized to reveal the interplay of phase constitution and domain configuration to the macroscopic electromechanical coupling effect in the morphotropic phase boundary composition of 0.365BiScO 3 –0.635PbTiO 3 during the application of a weak electrical loading in the present study. It was found that anisotropic phase transition and domain switching occur in polycrystalline ferroelectric ceramics and a phase transition occurs dramatically beyond the coercive field. Taking into account the important role of coupled ferroelectric and ferroelastic domain microstructures, we conceived a configuration of monoclinic domains coexisting with and bridging the tetragonal domains. The existence of bridging domains would provide an insight into the interplay of the phase and domain and explains the piezoelectric performance in the vicinity of morphotropic phase boundaries.more » « less
An official website of the United States government
