skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Zwicky Transient Facility Bright Transient Survey. III. BTSbot: Automated Identification and Follow-up of Bright Transients with Deep Learning
Abstract The Bright Transient Survey (BTS) aims to obtain a classification spectrum for all bright (mpeak≤ 18.5 mag) extragalactic transients found in the Zwicky Transient Facility (ZTF) public survey. BTS critically relies on visual inspection (“scanning”) to select targets for spectroscopic follow-up, which, while effective, has required a significant time investment over the past ∼5 yr of ZTF operations. We presentBTSbot, a multimodal convolutional neural network, which provides a bright transient score to individual ZTF detections using their image data and 25 extracted features.BTSbotis able to eliminate the need for daily human scanning by automatically identifying and requesting spectroscopic follow-up observations of new bright transient candidates.BTSbotrecovers all bright transients in our test split and performs on par with scanners in terms of identification speed (on average, ∼1 hr quicker than scanners). We also find thatBTSbotis not significantly impacted by any data shift by comparing performance across a concealed test split and a sample of very recent BTS candidates.BTSbothas been integrated intoFritzandKowalski, ZTF’s first-party marshal and alert broker, and now sends automatic spectroscopic follow-up requests for the new transients it identifies. Between 2023 December and 2024 May,BTSbotselected 609 sources in real time, 96% of which were real extragalactic transients. WithBTSbotand other automation tools, the BTS workflow has produced the first fully automatic end-to-end discovery and classification of a transient, representing a significant reduction in the human time needed to scan.  more » « less
Award ID(s):
2034437
PAR ID:
10535199
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 7
Size(s):
Article No. 7
Sponsoring Org:
National Science Foundation
More Like this
  1. We present SNIascore, a deep-learning based method for spectroscopic classification of thermonuclear supernovae (SNe Ia) based on very low-resolution (R ∼100) data. The goal of SNIascore is fully automated classification of SNe Ia with a very low false-positive rate (FPR) so that human intervention can be greatly reduced in large-scale SN classification efforts, such as that undertaken by the public Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS). We utilize a recurrent neural network (RNN) architecture with a combination of bidirectional long short-term memory and gated recurrent unit layers. SNIascore achieves a <0.6% FPR while classifying up to 90% of the low-resolution SN Ia spectra obtained by the BTS. SNIascore simultaneously performs binary classification and predicts the redshifts of secure SNe Ia via regression (with a typical uncertainty of <0.005 in the range from z=0.01 to z=0.12). For the magnitude-limited ZTF BTS survey (≈70% SNe Ia), deploying SNIascore reduces the amount of spectra in need of human classification or confirmation by ≈60%. Furthermore, SNIascore allows SN Ia classifications to be automatically announced in real-time to the public immediately following a finished observation during the night. 
    more » « less
  2. Context. With a rapidly rising number of transients detected in astronomy, classification methods based on machine learning are increasingly being employed. Their goals are typically to obtain a definitive classification of transients, and for good performance they usually require the presence of a large set of observations. However, well-designed, targeted models can reach their classification goals with fewer computing resources. Aims. The aim of this study is to assist in the observational astronomy task of deciding whether a newly detected transient warrants follow-up observations. Methods. This paper presents SNGuess, a model designed to find young extragalactic nearby transients with high purity. SNGuess works with a set of features that can be efficiently calculated from astronomical alert data. Some of these features are static and associated with the alert metadata, while others must be calculated from the photometric observations contained in the alert. Most of the features are simple enough to be obtained or to be calculated already at the early stages in the lifetime of a transient after its detection. We calculate these features for a set of labeled public alert data obtained over a time span of 15 months from the Zwicky Transient Facility (ZTF). The core model of SNGuess consists of an ensemble of decision trees, which are trained via gradient boosting. Results. Approximately 88% of the candidates suggested by SNGuess from a set of alerts from ZTF spanning from April 2020 to August 2021 were found to be true relevant supernovae (SNe). For alerts with bright detections, this number ranges between 92% and 98%. Since April 2020, transients identified by SNGuess as potential young SNe in the ZTF alert stream are being published to the Transient Name Server (TNS) under the AMPEL_ZTF_NEW group identifier. SNGuess scores for any transient observed by ZTF can be accessed via a web service https://ampel.zeuthen.desy.de/api/live/docs . The source code of SNGuess is publicly available https://github.com/nmiranda/SNGuess . Conclusions. SNGuess is a lightweight, portable, and easily re-trainable model that can effectively suggest transients for follow-up. These properties make it a useful tool for optimizing follow-up observation strategies and for assisting humans in the process of selecting candidate transients. 
    more » « less
  3. Abstract We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopicanomalies), of uncommon host galaxy environments (contextualanomalies), and of peculiar or interaction-powered phenomena (behavioralanomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the “needle in the haystack” in large-volume data streams. Because of its integration with the ANTARES broker,LAISSis built to detect exciting transients in Rubin data. 
    more » « less
  4. While optical surveys regularly discover slow transients like supernovae on their own, the most common way to discover extragalactic fast transients, fading away in a few nights, is via follow-up observations of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to also identify rapidly fading transients independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF) makes it sensitive to faint and fast-fading objects as kilonovae, the optical counterparts to binary neutron stars and neutron star-black hole mergers, out to almost 200Mpc. We introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, designed to identify kilonovae and fast optical transients in ZTF data. Using the ZTF alert stream combined with forced photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering of follow-up systems, such as Las Cumbres Observatory, has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independent of any external trigger (though some counterparts were identified later), including at least one supernova with post-shock cooling emission, two known afterglows with an associated gamma-ray burst, two known afterglows without any known gamma-ray counterpart, and three new fast-declining sources (ZTF20abtxwfx, ZTF20acozryr, and ZTF21aagwbjr) that are likely associated with GRB200817A, GRB201103B, and GRB210204A. However, we have not found any objects which appear to be kilonovae; therefore, we constrain the rate of GW170817-like kilonovae to R<900Gpc−3yr−1. A framework such as ZTFReST could become a prime tool for kilonova and fast transient discovery with the Vera C. Rubin Observatory. 
    more » « less
  5. Abstract During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network, the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star–black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (False Alarm Rate less than 1 yr−1) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing,Fritz, an instance ofSkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg2within the skymaps of the high-significance GW events, reaching a median depth ofg≈ 20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach,nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than −16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software,simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH events), along with our O4a follow-ups. Following Kasliwal et al., we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag day−1can peak at a magnitude brighter than −17.5 mag. 
    more » « less