skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemistry in Externally FUV-irradiated Disks in the Outskirts of the Orion Nebula Cluster
Abstract Most stars are born in stellar clusters, and their protoplanetary disks, which are the birthplaces of planets, can, therefore, be affected by the radiation of nearby massive stars. However, little is known about the chemistry of externally irradiated disks, including whether or not their properties are similar to the so-far better-studied isolated disks. Motivated by this question, we present ALMA Band 6 observations of two irradiated Class II protoplanetary disks in the outskirts of the Orion Nebula Cluster to explore the chemical composition of disks exposed to (external) far-ultraviolet (FUV) radiation fields: the 216-0939 disk and the binary system 253-1536A/B, which are exposed to radiation fields of 102–103times the average interstellar radiation field. We detect lines from CO isotopologues, HCN, H2CO, and C2H toward both protoplanetary disks. Based on the observed disk-integrated line fluxes and flux ratios, we do not find significant differences between isolated and irradiated disks. The observed differences seem to be more closely related to the different stellar masses than to the external radiation field. This suggests that these disks are far enough away from the massive Trapezium stars, that their chemistry is no longer affected by external FUV radiation. Additional observations toward lower-mass disks and disks closer to the massive Trapezium stars are required to elucidate the level of external radiation required to make an impact on the chemistry of planet formation in different kinds of disks.  more » « less
Award ID(s):
2205698
PAR ID:
10535229
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOPP
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Context. Protoplanetary disks in dense, massive star-forming regions are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. Aims. We characterize the dust emission from 179 disks in the core of the young (0.5 Myr) NGC 2024 cluster. By studying how the disk mass varies within the cluster, and comparing these disks to those in other regions, we aim to determine how external photoevaporation influences disk properties over time. Methods. Using the Atacama Large Millimeter/submillimeter Array, a 2.9′× 2.9′ mosaic centered on NGC 2024 FIR 3 was observed at 225 GHz with a resolution of 0.25″, or ~100 AU. The imaged region contains 179 disks identified at IR wavelengths, seven new disk candidates, and several protostars. Results. The overall detection rate of disks is 32 ± 4%. Few of the disks are resolved, with the exception of a giant ( R = 300 AU) transition disk. Serendipitously, we observe a millimeter flare from an X-ray bright young stellar object (YSO), and resolve continuum emission from a Class 0 YSO in the FIR 3 core. Two distinct disk populations are present: a more massive one in the east, along the dense molecular ridge hosting the FIR 1-5 YSOs, with a detection rate of 45 ± 7%. In the western population, towards IRS 1, only 15 ± 4% of disks are detected. Conclusions. NGC 2024 hosts two distinct disk populations. Disks along the dense molecular ridge are young (0.2–0.5 Myr) and partly shielded from the far ultraviolet radiation of IRS 2b; their masses are similar to isolated 1–3 Myr old SFRs. The western population is older and at lower extinctions, and may be affected by external photoevaporation from both IRS 1 and IRS 2b. However, it is possible these disks had lower masses to begin with. 
    more » « less
  2. Abstract The stellar cluster environment is expected to play a central role in the evolution of circumstellar disks. We use thermochemical modeling to constrain the dust and gas masses, disk sizes, UV and X-ray radiation fields, viewing geometries, and central stellar masses of 20 class II disks in the Orion Nebula Cluster (ONC). We fit a large grid of disk models to 350 GHz continuum, CO J = 3 − 2, and HCO + J = 4 − 3 Atacama Large Millimeter/submillimeter Array observations of each target, and we introduce a procedure for modeling interferometric observations of gas disks detected in absorption against a bright molecular cloud background. We find that the ONC disks are massive and compact, with typical radii <100 au, gas masses ≥10 −3 M ⊙ , and gas-to-dust ratios ≥100. The interstellar‐medium‐like gas-to-dust ratios derived from our modeling suggest that compact, externally irradiated disks in the ONC are less prone to gas-phase CO depletion than the massive and extended gas disks that are commonly found in nearby low-mass star-forming regions. The presence of massive gas disks indicates that external photoevaporation may have only recently begun operating in the ONC; though it remains unclear whether other cluster members are older and more evaporated than the ones in our sample. Finally, we compare our dynamically derived stellar masses with the stellar masses predicted from evolutionary models and find excellent agreement. Our study has significantly increased the number of dynamical mass measurements in the mass range ≤0.5 M ⊙ , demonstrating that the ONC is an ideal region for obtaining large samples of dynamical mass measurements toward low-mass M-dwarfs. 
    more » « less
  3. Abstract H2CO is a small organic molecule widely detected in protoplanetary disks. As a precursor to grain-surface formation of CH3OH, H2CO is considered an important precursor of O-bearing organic molecules that are locked in ices. Still, since gas-phase reactions can also form H2CO, there remains an open question on the channels by which organics form in disks, and how much the grain versus the gas pathways impact the overall organic reservoir. We present spectrally and spatially resolved Atacama Large Millimeter/submillimeter Array observations of several ortho- and para-H2CO transitions toward the bright protoplanetary disk around the Herbig Ae star HD 163296. We derive column density, excitation temperature, and ortho-to-para ratio (OPR) radial profiles for H2CO, as well as disk-averaged values ofNT∼ 4 × 1012cm−2,Tex∼ 20 K, and OPR ∼ 2.7, respectively. We empirically determine the vertical structure of the emission, finding vertical heights ofz/r∼ 0.1. From the profiles, we find a relatively constant OPR ∼ 2.7 with radius, but still consistent with 3.0 among the uncertainties, a secondary increase ofNTin the outer disk, and lowTexvalues that decrease with disk radius. Our resulting radial, vertical, and OPR constraints suggest an increased UV penetration beyond the dust millimeter edge, consistent with an icy origin but also with cold gas-phase chemistry. This Herbig disk contrasts previous results for the T Tauri disk, TW Hya, which had a larger contribution from cold gas-phase chemistry. More observations of other sources are needed to disentangle the dominant formation pathway of H2CO in protoplanetary disks. 
    more » « less
  4. Abstract We present new Atacama Large Millimeter/submillimeter Array observations that, for the first time, detect hydrogen and helium radio recombination lines from a protoplanetary disk. We imaged the Orion Nebula Cluster at 3.1 mm with a spectral setup that covered then= 42 → 41 transitions of hydrogen (H41α) and helium (He41α). The unprecedented sensitivity of these observations enables us to search for radio recombination lines toward the positions of ∼200 protoplanetary disks. We detect H41αfrom 17 disks, all of which are HST-identified “proplyds.” The detected H41αemission is spatially coincident with the locations of proplyd ionization fronts, indicating that proplyd H41αemission is produced by gas that has been photoevaporated off the disk and ionized by UV radiation from massive stars. We measure the fluxes and widths of the detected H41αlines and find line fluxes of ∼30–800 mJy km s−1and line widths of ∼30–90 km s−1. The derived line widths indicate that the broadening of proplyd H41αemission is dominated by outflowing gas motions associated with external photoevaporation. The derived line fluxes, when compared with measurements of 3.1 mm free–free flux, imply that the ionization fronts of H41α-detected proplyds have electron temperatures of ∼6000–11,000 K and electron densities of ∼106–107cm−3. Finally, we detect He41αtoward one H41α-detected source and find evidence that this system is helium-rich. Our study demonstrates that radio recombination lines are readily detectable in ionized photoevaporating disks, providing a new way to measure disk properties in clustered star-forming regions. 
    more » « less
  5. Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) has detected substructures in numerous protoplanetary disks at radii from a few to over 100 au. These substructures are commonly thought to be associated with planet formation, either by serving as sites fostering planetesimal formation or by arising as a consequence of planet–disk interactions. Our current understanding of substructures, though, is primarily based on observations of nearby star-forming regions with mild UV environments, whereas stars are typically born in much harsher UV environments, which may inhibit planet formation in the outer disk through external photoevaporation. We present high-resolution (∼8 au) ALMA 1.3 mm continuum images of eight disks inσOrionis, a cluster irradiated by an O9.5 star. Gaps and rings are resolved in the images of five disks. The most striking of these is SO 1274, which features five gaps that appear to be arranged nearly in a resonant chain. In addition, we infer the presence of gap or shoulder-like structures in the other three disks through visibility modeling. These observations indicate that substructures robustly form and survive at semimajor axes of several tens of au or less in disks exposed to intermediate levels of external UV radiation as well as in compact disks. However, our observations also suggest that disks inσOrionis are mostly small, and thus millimeter continuum gaps beyond a disk radius of 50 au are rare in this region, possibly due to either external photoevaporation or age effects. 
    more » « less