Abstract The ALMA survey of Gas Evolution in PROtoplanetary disks (AGE-PRO) Large Program aims to trace the evolution of gas disk mass and size throughout the lifetime of protoplanetary disks by using the Atacama Large Millimeter/submillimeter Array (ALMA). This paper presents Band-6 ALMA observations of 10 embedded (Class I and Flat Spectrum) sources in the Ophiuchus molecular cloud, with spectral types ranging from M3 to K6 stars, which serve as the evolutionary starting point in the AGE-PRO sample. While we find four nearly edge-on disks (≥70°), and three highly inclined disks (≥60°) in our sample, we show that, as a population, embedded disks in Ophiuchus are not significantly contaminated by more-evolved, but highly inclined sources. We derived dust disk masses from the Band-6 continuum and estimated gas disk masses from the C18OJ= 2−1 and C17OJ= 2−1 lines. The mass estimates from the C17O line are slightly higher, suggesting C18O emission might be partially optically thick. While the12CO and13CO lines are severely contaminated by extended emission and self-absorption, the C18O and C17O lines are allowed to trace the radial extent of the gaseous disks. From these measurements, we found that the C18OJ= 2−1 and C17OJ= 2−1 fluxes correlate well with each other and with the continuum fluxes. Furthermore, the C18O and C17O lines present a larger radial extension than disk dust sizes by factors ranging from ∼1.5 to ∼2.5, as is found for Class II disks using the radial extension of the12CO. In addition, we have detected outflows in three disks from12CO observations.
more »
« less
A tell-tale tracer for externally irradiated protoplanetary disks: Comparing the [C I] 8727 Å line and ALMA observations in proplyds
The evolution of protoplanetary disks in regions with massive OB stars is influenced by externally driven winds that deplete the outer parts of these disks. The winds have previously been studied via forbidden oxygen emission lines, which also arise in isolated disks in low-mass star-forming regions (SFRs) with weak external UV fields in photoevaporative or magnetic (internal) disk winds. It is crucial to determine how to disentangle external winds from internal ones. Here, we report a proxy for unambiguously identifying externally driven winds with a forbidden line of neutral atomic carbon, [CI] 8727 Å. We compare for the first time the spatial location of the emission in the [OI] 5577 Å, [OI] 6300 Å, and [CI] 8727 Å lines traced by VLT/MUSE-NFM with the ALMA Band 7 continuum disk emission in a sample of 12 proplyds in the Orion Nebula Cluster (ONC). We confirm that the [OI] 5577 Å emission is co-spatial with the disk emission, whereas that of [OI] 6300 Å is emitted both on the disk surface and on the ionization front of the proplyds. We show for the first time that the [CI] 8727 Å line is also co-spatial with the disk surface in proplyds, as seen in the MUSE and ALMA data comparison. The peak emission is compatible with the stellar location in all cases, apart from one target with high relative inclination with respect to the ionizing radiation, where the peak emission is located at the disk edge in the direction of the ionizing radiation. To verify whether the [CI] 8727 Å line is detected in regions where external photoevaporation is not expected, we examined VLT/X-Shooter spectra for young stars in low-mass SFRs. Although the [OI] 5577 Å and 6300 Å lines are well detected in all these targets, the total detection rate is ≪10% in the case of the [CI] 8727 Å line. This number increases substantially to a ∼40% detection rate inσ-Orionis, a region with higher UV radiation than in low-mass SFRs, but lower than in the ONC. The spatial location of the [CI] 8727 Å line emission and the lack of its detection in isolated disks in low-mass SFRs strongly suggest that this line is a tell-tale tracer of externally driven photoevaporative winds, which agrees with recent excitation models.
more »
« less
- Award ID(s):
- 2205698
- PAR ID:
- 10627440
- Publisher / Repository:
- Astronomy & Astrophysics
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 692
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A137
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.more » « less
-
Abstract The stellar cluster environment is expected to play a central role in the evolution of circumstellar disks. We use thermochemical modeling to constrain the dust and gas masses, disk sizes, UV and X-ray radiation fields, viewing geometries, and central stellar masses of 20 class II disks in the Orion Nebula Cluster (ONC). We fit a large grid of disk models to 350 GHz continuum, CO J = 3 − 2, and HCO + J = 4 − 3 Atacama Large Millimeter/submillimeter Array observations of each target, and we introduce a procedure for modeling interferometric observations of gas disks detected in absorption against a bright molecular cloud background. We find that the ONC disks are massive and compact, with typical radii <100 au, gas masses ≥10 −3 M ⊙ , and gas-to-dust ratios ≥100. The interstellar‐medium‐like gas-to-dust ratios derived from our modeling suggest that compact, externally irradiated disks in the ONC are less prone to gas-phase CO depletion than the massive and extended gas disks that are commonly found in nearby low-mass star-forming regions. The presence of massive gas disks indicates that external photoevaporation may have only recently begun operating in the ONC; though it remains unclear whether other cluster members are older and more evaporated than the ones in our sample. Finally, we compare our dynamically derived stellar masses with the stellar masses predicted from evolutionary models and find excellent agreement. Our study has significantly increased the number of dynamical mass measurements in the mass range ≤0.5 M ⊙ , demonstrating that the ONC is an ideal region for obtaining large samples of dynamical mass measurements toward low-mass M-dwarfs.more » « less
-
Abstract The broad emission lines (BELs) emitted by active galactic nuclei respond to variations in the ionizing continuum emission from the accretion disk surrounding the central supermassive black hole (SMBH). This reverberation response provides insights into the structure and dynamics of the broad-line region (BLR). In 2024, we introduced a new forward-modeling tool, the Broad Emission Line Mapping Code (BELMAC), which simulates the velocity-resolved reverberation response of the BLR to an input light curve. In this work, we describe a new version of BELMAC, which uses photoionization models to calculate the cloud luminosities for selected BELs. We investigated the reverberation responses of Hα, Hβ, MgIIλ2800, and CIVλ1550 for models representing a disk-like BLR with Keplerian rotation, radiatively driven outflows, and inflows. The line responses generally provide a good indication of the respective luminosity-weighted radii. However, there are situations where the BLR exhibits a negative response to the driving continuum, causing overestimates of the luminosity-weighted radius. The virial mass derived from the models can differ dramatically from the actual SMBH mass, depending mainly on the disk inclination and velocity field. In single-zone models, the BELs exhibit similar responses and profile shapes; two-zone models, such as a Keplerian disk and a biconical outflow, can reproduce observed differences between high- and low-ionization lines. Radial flows produce asymmetric line profile shapes due to both anisotropic cloud emission and electron scattering in an intercloud medium. These competing attenuation effects complicate the interpretation of profile asymmetries.more » « less
-
Abstract Outflows and winds launched from young stars play a crucial role in the evolution of protostars and the early stages of planet formation. However, the specific details of the mechanism behind these phenomena, including how they affect the protoplanetary disk structure, are still debated. We present JWST NIRSpec integral field unit observations of atomic and H2lines from 1 to 5.1μm toward the low-mass protostar TMC1A. For the first time, a collimated atomic jet is detected from TMC1A in the [Feii] line at 1.644μm along with corresponding extended H22.12μm emission. Toward the protostar, we detected spectrally broad Hiand Heiemissions with velocities up to 300 km s−1that can be explained by a combination of protostellar accretion and a wide-angle wind. The 2μm continuum dust emission, Hi, Hei, and Oiall show emission from the illuminated outflow cavity wall and scattered line emission. These observations demonstrate the potential of JWST to characterize and reveal new information about the hot inner regions of nearby protostars; in this case, a previously undetected atomic wind and ionized jet in a well-known outflow.more » « less
An official website of the United States government

