Disruption of pulmonary vascular homeostasis is a central feature of viral pneumonia, wherein endothelial cell (EC) death and subsequent angiogenic responses are critical determinants of the outcome of severe lung injury. A more granular understanding of the fundamental mechanisms driving reconstitution of lung endothelium is necessary to facilitate therapeutic vascular repair. Here, we demonstrated that TGF-β signaling through TGF-βR2 (transforming growth factor–β receptor 2) is activated in pulmonary ECs upon influenza infection, and mice deficient in endothelialTgfbr2exhibited prolonged injury and diminished vascular repair. Loss of endothelialTgfbr2prevented autocrineVegfa(vascular endothelial growth factor α) expression, reduced endothelial proliferation, and impaired renewal of aerocytes thought to be critical for alveolar gas exchange. Angiogenic responses through TGF-βR2 were attributable to leucine-rich α-2-glycoprotein 1, a proangiogenic factor that counterbalances canonical angiostatic TGF-β signaling. Further, we developed a lipid nanoparticle that targets the pulmonary endothelium, Lung-LNP (LuLNP). Delivery ofVegfamRNA, a critical TGF-βR2 downstream effector, by LuLNPs improved the impaired regeneration phenotype of ECTgfbr2deficiency during influenza injury. These studies defined a role for TGF-βR2 in lung endothelial repair and demonstrated efficacy of an efficient and safe endothelial-targeted LNP capable of delivering therapeutic mRNA cargo for vascular repair in influenza infection.
more »
« less
This content will become publicly available on December 1, 2025
TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo
Abstract HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a64Cu-DOTA-F(ab’)2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
more »
« less
- Award ID(s):
- 2021900
- PAR ID:
- 10535231
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response.more » « less
-
null (Ed.)Programmed cell death protein-1 (PD-1) checkpoint immunotherapy efficacy remains unpredictable in glioblastoma (GBM) patients due to the genetic heterogeneity and immunosuppressive tumor microenvironments. Here, we report a microfluidics-based, patient-specific ‘GBM-on-a-Chip’ microphysiological system to dissect the heterogeneity of immunosuppressive tumor microenvironments and optimize anti-PD-1 immunotherapy for different GBM subtypes. Our clinical and experimental analyses demonstrated that molecularly distinct GBM subtypes have distinct epigenetic and immune signatures that may lead to different immunosuppressive mechanisms. The real-time analysis in GBM-on-a-Chip showed that mesenchymal GBM niche attracted low number of allogeneic CD154+CD8+ T-cells but abundant CD163+ tumor-associated macrophages (TAMs), and expressed elevated PD-1/PD-L1 immune checkpoints and TGF-β1, IL-10, and CSF-1 cytokines compared to proneural GBM. To enhance PD-1 inhibitor nivolumab efficacy, we co-administered a CSF-1R inhibitor BLZ945 to ablate CD163+ M2-TAMs and strengthened CD154+CD8+ T-cell functionality and GBM apoptosis on-chip. Our ex vivo patient-specific GBM-on-a-Chip provides an avenue for a personalized screening of immunotherapies for GBM patients.more » « less
-
Abstract Allogeneic Vγ9Vδ2 (Vδ2) T cells have emerged as attractive candidates for developing cancer therapy due to their established safety in allogeneic contexts and inherent tumor-fighting capabilities. Nonetheless, the limited clinical success of Vδ2 T cell-based treatments may be attributed to donor variability, short-lived persistence, and tumor immune evasion. To address these constraints, we engineer Vδ2 T cells with enhanced attributes. By employing CD16 as a donor selection biomarker, we harness Vδ2 T cells characterized by heightened cytotoxicity and potent antibody-dependent cell-mediated cytotoxicity (ADCC) functionality. RNA sequencing analysis supports the augmented effector potential of Vδ2 T cells derived from CD16 high (CD16Hi) donors. Substantial enhancements are further achieved through CAR and IL-15 engineering methodologies. Preclinical investigations in two ovarian cancer models substantiate the effectiveness and safety of engineered CD16HiVδ2 T cells. These cells target tumors through multiple mechanisms, exhibit sustained in vivo persistence, and do not elicit graft-versus-host disease. These findings underscore the promise of engineered CD16HiVδ2 T cells as a viable therapeutic option for cancer treatment.more » « less
-
Abstract Immunotherapies have shown promising results in treating patients with hematological malignancies like multiple myeloma, which is an incurable but treatable bone marrow-resident plasma cell cancer. Choosing the most efficacious treatment for a patient remains a challenge in such cancers. However, pre-clinical assays involving patient-derived tumor cells co-cultured in anex vivoreconstruction of immune-tumor micro-environment have gained considerable notoriety over the past decade. Such assays can characterize a patient’s response to several therapeutic agents including immunotherapies in a high-throughput manner, where bright-field images of tumor (target) cells interacting with effector cells (T cells, Natural Killer (NK) cells, and macrophages) are captured once every 30 minutes for upto six days. Cell detection, tracking, and classification of thousands of cells of two or more types in each frame is bound to test the limits of some of the most advanced computer vision tools developed to date and requires a specialized approach. We propose TLCellClassifier (time-lapse cell classifier) for live cell detection, cell tracking, and cell type classification, with enhanced accuracy and efficiency obtained by integrating convolutional neural networks (CNN), metric learning, and long short-term memory (LSTM) networks, respectively. State-of-the-art computer vision software like KTH-SE and YOLOv8 are compared with TLCellClassifier, which shows improved accuracy in detection (CNN) and tracking (metric learning). A two-stage LSTM-based cell type classification method is implemented to distinguish between multiple myeloma (tumor/target) cells and macrophages/monocytes (immune/effector cells). Validation of cell type classification was done both using synthetic datasets andex vivoexperiments involving patient-derived tumor/immune cells. Availability and implementationhttps://github.com/QibingJiang/cell classification mlmore » « less
An official website of the United States government
