ABSTRACT Accurately estimating species distributions is critical for tracking how biodiversity is shaped by global change. While some species are expanding their ranges, the importance of factors like climate change, habitat change, and human avoidance for explaining this expansion is not well understood. Here, we used observations of 94 North American mammals on iNaturalist to (1) identify errors of omission in the existing range maps; (2) differentiate between extra‐range populations that are likely products of natural expansions vs. introductions; and (3) test hypotheses about where natural range expansions occur. We found a substantial percentage of observations were outside both IUCN (16%) and Area of Habitat (36%) maps, suggesting that integrating contemporary citizen science data would improve existing range maps. We estimated that most observations outside IUCN ranges were natural expansions and 95% of species had at least one naturally expanding population. We also identified introductions for 36% of species, which were particularly extensive for several species. We show that natural range expansions are generally associated with a lighter human footprint and less habitat change and are not associated with warming temperatures. This suggests that habitat modifications by humans constrain the ability of species to expand their range to track a changing climate. We also found substantial variation in the directionality of effects from all factors across species, meaning that our species‐specific findings will be useful for conservation planning. Our study demonstrates that citizen science data can be useful for conservation by tracking how organisms are responding, or failing to respond, to global change. 
                        more » 
                        « less   
                    
                            
                            Combining camera trap surveys and IUCN range maps to improve knowledge of species distributions
                        
                    
    
            Abstract Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium‐ to large‐bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller‐bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground‐based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2211768
- PAR ID:
- 10535289
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Conservation Biology
- Volume:
- 38
- Issue:
- 3
- ISSN:
- 0888-8892
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding area (the “neighborhood”). We implement its use for a forest‐dwelling species (Handleyomys chapmani) considered threatened by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suitability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy (AOO), two metrics used by the IUCN for threat level categorization. The values estimated here suggest removing the species from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2 × 2 km grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the practicality of using habitat‐refined distribution maps for biogeography and conservation.more » « less
- 
            Subterranean ecosystems harbor globally important yet highly threatened biodiversity. Unfortunately, subterranean biodiversity is often neglected in regional and global conservation initiatives, including conservation assessments. We reviewed the conservation status and threats to subterranean species based on the two most popular conservation assessment protocols in North America, NatureServe and International Union for Conservation of Nature (IUCN) Red List, as well as federal and state/provincial protection status of the 1,460 described cave-obligate species occurring in the United States and Canada. Only 9.3% of species have been assessed under IUCN Red List criteria compared to 77.9% of species assessed under NatureServe criteria; notably, 1,065 and 116 of species are assessed at an elevated risk of extinction by NatureServe and IUCN Red List, respectively. Just 41 species are listed or proposed to be listed under the U.S. Endangered Species Act and none of the 10 species that occur in Canada are federally listed. Vertebrates (fishes and salamanders), decapods (crayfishes and shrimps), and U.S. federally listed species are overrepresented on the list of species with IUCN Red List assessments compared to other taxonomic groups, particularly arachnids, millipedes, and insects. Most species assessed under IUCN Red List criteria as well as federally listed species occur in the Edwards Plateau and Balcones Escarpment karst region of Texas. Major threats frequently reported in conservation assessments include habitat degradation, pollution/contamination, recreational activities, climate change, and groundwater exploitation; however, information on threats was lacking for most species for nearly all major taxonomic groups, except decapods, fishes, and salamanders. The intrinsic vulnerability of subterranean biodiversity coupled with the many potential threats facing species and extensive biodiversity knowledge gaps makes assessing their conservation status and ultimately their protection a challenging endeavor. We highlight several limitations of implementing current conservation assessment approaches while offering recommendations to improve our ability to assess the conservation status of subterranean biodiversity to better inform sound local to global conservation policies and actions.more » « less
- 
            The objective of this ongoing study is to investigate how abundance, distribution, and activity of mammals (>= 1 kg) vary across grassland to shrubland ecotones in the northern Chihuahuan Desert. This dataset includes animal occurrence data derived from camera trap images captured in 24 grassland-to-shrubland ecotone sites in the Jornada Basin, Dona Ana County, New Mexico, USA. The data set contains occurrence records from 14 mammal species with the date and time a species was detected. Also included are the number of individuals in a photo, operational dates and number of functional camera days for cameras, total number of trap nights a camera was active, and geographical coordinates of camera trap locations. Sampling is ongoing and occurs during the monsoon season from July-November. Sampling has occurred annually since 2014.more » « less
- 
            Abstract Camera trapping has revolutionized wildlife ecology and conservation by providing automated data acquisition, leading to the accumulation of massive amounts of camera trap data worldwide. Although management and processing of camera trap‐derived Big Data are becoming increasingly solvable with the help of scalable cyber‐infrastructures, harmonization and exchange of the data remain limited, hindering its full potential. There is currently no widely accepted standard for exchanging camera trap data. The only existing proposal, “Camera Trap Metadata Standard” (CTMS), has several technical shortcomings and limited adoption. We present a new data exchange format, the Camera Trap Data Package (Camtrap DP), designed to allow users to easily exchange, harmonize and archive camera trap data at local to global scales. Camtrap DP structures camera trap data in a simple yet flexible data model consisting of three tables (Deployments, Media and Observations) that supports a wide range of camera deployment designs, classification techniques (e.g., human and AI, media‐based and event‐based) and analytical use cases, from compiling species occurrence data through distribution, occupancy and activity modeling to density estimation. The format further achieves interoperability by building upon existing standards, Frictionless Data Package in particular, which is supported by a suite of open software tools to read and validate data. Camtrap DP is the consensus of a long, in‐depth, consultation and outreach process with standard and software developers, the main existing camera trap data management platforms, major players in the field of camera trapping and the Global Biodiversity Information Facility (GBIF). Under the umbrella of the Biodiversity Information Standards (TDWG), Camtrap DP has been developed openly, collaboratively and with version control from the start. We encourage camera trapping users and developers to join the discussion and contribute to the further development and adoption of this standard.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    