skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weight Selection for Pattern Control of Paraboloidal Reflector Antennas with Reconfigurable Rim Scattering
It has been recently demonstrated that modifying the rim scattering of a paraboloidal reflector antenna through the use of reconfigurable elements along the rim facilitates sidelobe modification including cancelling sidelobes. In this work we investigate techniques for determining the unit-magnitude weights (i.e., weights which modify the phase of the scattered signals) to accomplish sidelobe cancellation at arbitrary angles from the reflector axis. Specifically, it is shown that despite the large search space and the non-convexity of the cost function, weights can be found with reasonable complexity which provide significant cancellation capability. First, the optimal weights without any magnitude constraints are found. Afterwards, algorithms are developed for determining the unit-modulus weights with both quantized and unquantized phases. Further, it is shown that weights can be obtained that both cancel sidelobes while providing a constant main lobe gain. A primary finding is that sufficiently deep nulls are possible with essentially no change in the main lobe with practical (binary or quaternary) phase-only weights.  more » « less
Award ID(s):
2128506
PAR ID:
10535318
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-9032-0
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Location:
Big Sky, MT, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Radio telescopes are susceptible to interference arriving through its sidelobes. If a reflector antenna could be retrofitted with an adaptive null steering system, it could potentially mitigate this interference. The design of a reflectarray which can be used to reconfigure a radio telescope’s radiation pattern by driving a null to the angle of incoming interference is presented. The reflectarray occupies only a portion of the rim of the original reflector and lays conformal to the paraboloid within this region. The conformal reflectarray contains unit cells with 1-bit reconfigurability stemming from two symmetrically placed PIN diodes. It is found that the dielectric and switch losses introduced by the reflectarray do not significantly affect the radio telescopes efficiency since the reflectarray is placed only along the outer rim of the reflector which is weakly illuminated. Simulation results of an L-band reconfigurable reflectarray for an 18 m prime focus fed parabola are presented. 
    more » « less
  2. Telescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a three mirror anastigmat telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile. 
    more » « less
  3. Abstract We report 10 fast radio bursts (FRBs) detected in the far sidelobe region (i.e., ≥5° off-meridian) of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) from August 28 2018 to August 31 2021. We localize the bursts by fitting their spectra with a model of the CHIME/FRB synthesized beam response. We find that the far sidelobe events have on average ∼500 times greater fluxes than events detected in CHIME’s main lobe. We show that the sidelobe sample is therefore statistically ∼20 times closer than the main lobe sample. We find promising host galaxy candidates (Pcc< 1%) for two of the FRBs, 20190112B and 20210310B, at distances of 38 and 16 Mpc, respectively. CHIME/FRB did not observe repetition of similar brightness from the uniform sample of 10 sidelobe FRBs in a total exposure time of 35,580 hr. Under the assumption of Poisson-distributed bursts, we infer that the mean repetition interval above the detection threshold of the far sidelobe events is longer than 11,880 hr, which is at least 2380 times larger than the interval from known CHIME/FRB detected repeating sources, with some caveats, notably that very narrowband events could have been missed. Our results from these far sidelobe events suggest one of two scenarios: either (1) all FRBs repeat and the repetition intervals span a wide range, with high-rate repeaters being a rare sub-population, or (2) non-repeating FRBs are a distinct population different from known repeaters. 
    more » « less
  4. Integrated sensing and communication (ISAC) is a key enabling technique for future wireless networks owing to its efficient hardware and spectrum utilization. In this paper, we focus on dual-functional waveform design for a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system, which is considered to be a promising solution for practical deployment. Since the dual-functional waveform carries communication information, its random nature leads to high range-Doppler sidelobes in the ambiguity function, which in turn degrades radar sensing performance. To suppress range- Doppler sidelobes, we propose a novel symbol-level precoding (SLP)-based waveform design for MIMO-OFDM ISAC systems by fully exploiting the available temporal degrees of freedom. Our goal is to minimize the range-Doppler integrated sidelobe level (ISL) while satisfying the constraints of target illumination power, multi-user communication quality of service (QoS), and constant-modulus transmission. To solve the resulting non-convex waveform design problem, we develop an efficient algorithm using the majorization-minimization (MM) and alternative direction method of multipliers (ADMM) methods. Simulation results show that the proposed waveform has significantly reduced range-Doppler sidelobes compared with signals designed only for communications and other baselines. In addition, the proposed waveform design achieves target detection and estimation performance close to that achievable by waveforms designed only for radar, which demonstrates the superiority of the proposed SLP-based ISAC approach. 
    more » « less
  5. null (Ed.)
    There may be situations where a direct line of sight between a transmitter and a receiver is blocked. In such a situation it may be possible to transmit a signal upward from a transmitter to a swarm of drones, each of which carries a scattering object. By positioning each drone properly, the scattered signal from the drones can add coherently in a given direction, forming a beam in that direction. The altitude of each drone is used as a degree of freedom in order to change the phase of the signal scattered by the drone. For a given set of horizontal drone positions, the drone altitudes can be determined to produce a main beam in a given direction. The drone positions can also be optimized to focus a beam in a given direction while producing pattern nulls in other prescribed directions with very small sidelobes. 
    more » « less