skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dirac geometry II: coherent cohomology
Abstract Dirac rings are commutative algebras in the symmetric monoidal category of$$\mathbb {Z}$$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger$$\infty $$-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to$$\operatorname {MU}$$and$$\mathbb {F}_p$$in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.  more » « less
Award ID(s):
1926686
PAR ID:
10535368
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
12
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category$${\mathcal {C}}$$and$${\mathcal {C}}$$-module category$${\mathcal {M}}$$, we introduce a version of the Drinfeld center$${\mathcal {Z}}({\mathcal {C}})$$of$${\mathcal {C}}$$adapted for$${\mathcal {M}}$$; we refer to this category as thereflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$of$${\mathcal {M}}$$. Just like$${\mathcal {Z}}({\mathcal {C}})$$is a canonical braided monoidal category attached to$${\mathcal {C}}$$, we show that$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$is a canonical braided module category attached to$${\mathcal {M}}$$; its properties are investigated in detail. Our second goal pertains to when$${\mathcal {C}}$$is the category of modules over a quasitriangular Hopf algebraH, and$${\mathcal {M}}$$is the category of modules over anH-comodule algebraA. We show that the reflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$here is equivalent to a category of modules over an explicit algebra, denoted by$$R_H(A)$$, which we call thereflective algebraofA. This result is akin to$${\mathcal {Z}}({\mathcal {C}})$$being represented by the Drinfeld double$${\operatorname {Drin}}(H)$$ofH. We also study the properties of reflective algebras. Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangularH-comodule algebras, and we examine their corresponding quantumK-matrices; this yields solutions to the qRE. We also establish that the reflective algebra$$R_H(\mathbb {k})$$is an initial object in the category of quasitriangularH-comodule algebras, where$$\mathbb {k}$$is the ground field. The case whenHis the Drinfeld double of a finite group is illustrated. 
    more » « less
  2. Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
    more » « less
  3. Abstract Let$$\Omega _n$$be the ring of polynomial-valued holomorphic differential forms on complexn-space, referred to in physics as the superspace ring of rankn. The symmetric group$${\mathfrak {S}}_n$$acts diagonally on$$\Omega _n$$by permuting commuting and anticommuting generators simultaneously. We let$$SI_n \subseteq \Omega _n$$be the ideal generated by$${\mathfrak {S}}_n$$-invariants with vanishing constant term and study the quotient$$SR_n = \Omega _n / SI_n$$of superspace by this ideal. We calculate the doubly-graded Hilbert series of$$SR_n$$and prove an ‘operator theorem’, which characterizes the harmonic space$$SH_n \subseteq \Omega _n$$attached to$$SR_n$$in terms of the Vandermonde determinant and certain differential operators. Our methods employ commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki. 
    more » « less
  4. Abstract LetKbe an imaginary quadratic field and$$p\geq 5$$a rational prime inert inK. For a$$\mathbb {Q}$$-curveEwith complex multiplication by$$\mathcal {O}_K$$and good reduction atp, K. Rubin introduced ap-adicL-function$$\mathscr {L}_{E}$$which interpolates special values ofL-functions ofEtwisted by anticyclotomic characters ofK. In this paper, we prove a formula which links certain values of$$\mathscr {L}_{E}$$outside its defining range of interpolation with rational points onE. Arithmetic consequences includep-converse to the Gross–Zagier and Kolyvagin theorem forE. A key tool of the proof is the recent resolution of Rubin’s conjecture on the structure of local units in the anticyclotomic$${\mathbb {Z}}_p$$-extension$$\Psi _\infty $$of the unramified quadratic extension of$${\mathbb {Q}}_p$$. Along the way, we present a theory of local points over$$\Psi _\infty $$of the Lubin–Tate formal group of height$$2$$for the uniformizing parameter$$-p$$. 
    more » « less
  5. For$$2 \leq d \leq 5$$, we show that the class of the Hurwitz space of smooth degree$$d$$, genus$$g$$covers of$$\mathbb {P}^1$$stabilizes in the Grothendieck ring of stacks as$$g \to \infty$$, and we give a formula for the limit. We also verify this stabilization when one imposes ramification conditions on the covers, and obtain a particularly simple answer for this limit when one restricts to simply branched covers. 
    more » « less