Abstract We prove novel asymptotic freeness results in tracial ultraproduct von Neumann algebras. In particular, we show that whenever$$M = M_1 \ast M_2$$is a tracial free product von Neumann algebra and$$u_1 \in \mathscr U(M_1)$$,$$u_2 \in \mathscr U(M_2)$$are Haar unitaries, the relative commutants$$\{u_1\}' \cap M^{\mathcal U}$$and$$\{u_2\}' \cap M^{\mathcal U}$$are freely independent in the ultraproduct$$M^{\mathcal U}$$. Our proof relies on Mei–Ricard’s results [MR16] regarding$$\operatorname {L}^p$$-boundedness (for all$$1 < p < +\infty $$) of certain Fourier multipliers in tracial amalgamated free products von Neumann algebras. We derive two applications. Firstly, we obtain a general absorption result in tracial amalgamated free products that recovers several previous maximal amenability/Gamma absorption results. Secondly, we prove a new lifting theorem which we combine with our asymptotic freeness results and Chifan–Ioana–Kunnawalkam Elayavalli’s recent construction [CIKE22] to provide the first example of a$$\mathrm {II_1}$$factor that does not have property Gamma and is not elementary equivalent to any free product of diffuse tracial von Neumann algebras.
more »
« less
Reflective centers of module categories and quantum K-matrices
Abstract Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods. To start, given a braided monoidal category$${\mathcal {C}}$$and$${\mathcal {C}}$$-module category$${\mathcal {M}}$$, we introduce a version of the Drinfeld center$${\mathcal {Z}}({\mathcal {C}})$$of$${\mathcal {C}}$$adapted for$${\mathcal {M}}$$; we refer to this category as thereflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$of$${\mathcal {M}}$$. Just like$${\mathcal {Z}}({\mathcal {C}})$$is a canonical braided monoidal category attached to$${\mathcal {C}}$$, we show that$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$is a canonical braided module category attached to$${\mathcal {M}}$$; its properties are investigated in detail. Our second goal pertains to when$${\mathcal {C}}$$is the category of modules over a quasitriangular Hopf algebraH, and$${\mathcal {M}}$$is the category of modules over anH-comodule algebraA. We show that the reflective center$${\mathcal {E}}_{\mathcal {C}}({\mathcal {M}})$$here is equivalent to a category of modules over an explicit algebra, denoted by$$R_H(A)$$, which we call thereflective algebraofA. This result is akin to$${\mathcal {Z}}({\mathcal {C}})$$being represented by the Drinfeld double$${\operatorname {Drin}}(H)$$ofH. We also study the properties of reflective algebras. Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangularH-comodule algebras, and we examine their corresponding quantumK-matrices; this yields solutions to the qRE. We also establish that the reflective algebra$$R_H(\mathbb {k})$$is an initial object in the category of quasitriangularH-comodule algebras, where$$\mathbb {k}$$is the ground field. The case whenHis the Drinfeld double of a finite group is illustrated.
more »
« less
- Award ID(s):
- 2200762
- PAR ID:
- 10618642
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2050-5094
- Page Range / eLocation ID:
- e67
- Format(s):
- Medium: X Other: pdf/a
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dirac rings are commutative algebras in the symmetric monoidal category of$$\mathbb {Z}$$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger$$\infty $$-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to$$\operatorname {MU}$$and$$\mathbb {F}_p$$in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.more » « less
-
Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology.more » « less
-
Abstract For a smooth projective surface$$X$$satisfying$$H_1(X,\mathbb{Z}) = 0$$and$$w \in H^2(X,\mu _r)$$, we study deformation invariants of the pair$$(X,w)$$. Choosing a Brauer–Severi variety$$Y$$(or, equivalently, Azumaya algebra$$\mathcal{A}$$) over$$X$$with Stiefel–Whitney class$$w$$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on$$Y$$constructed by Yoshioka (or, equivalently, moduli spaces of$$\mathcal{A}$$-modules of Hoffmann–Stuhler). We show that the invariants do not depend on the choice of$$Y$$. Using a result of de Jong, we observe that they are deformation invariants of the pair$$(X,w)$$. For surfaces with$$h^{2,0}(X) \gt 0$$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on$$X$$. This can be seen as a$${\rm PGL}_r$$–$${\rm SL}_r$$correspondence. As an application, we express$${\rm SU}(r) / \mu _r$$Vafa–Witten invariants of$$X$$in terms of$${\rm SU}(r)$$Vafa–Witten invariants of$$X$$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on$$X$$with given division algebra at the generic point.more » « less
-
Abstract We study collections of subrings of$$H^*({\overline {\mathcal {M}}}_{g,n})$$that are closed under the tautological operations that map cohomology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flexible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for the$$\ell $$-adic Galois representations and Hodge structures that appear in$$H^k({\overline {\mathcal {M}}}_{g,n})$$for$$k = 13$$,$$14$$and$$15$$. We also show that$$H^4({\overline {\mathcal {M}}}_{g,n})$$is generated by tautological classes for allgandn, confirming a prediction of Arbarello and Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of$${\mathcal {M}}_{7,n}$$is generated by algebraic cycle classes, for$$n \leq 3$$.more » « less
An official website of the United States government

