skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeepCare: Deep Learning-Based Smart Healthcare Framework using 5G Assisted Network Slicing
5G and beyond communication networks require satisfying very low latency standards, high reliability, high- speed user connectivity, more security, improved capacity and better service demands. Augmenting such a wide range of KPIs (Key Performance Indicators) needs a smart, intelligent and programmable solution for TSPs (Telecommunication Service Providers). Resource availability and quality sustainability are challenging parameters in a heterogeneous 5G environment. Programmable Dynamic Network Slicing (PDNS) is a key technology enabling parameter that can allow multiple tenants to bring their versatile applications simultaneously over shared physical infrastructure. Latest emerging technologies like virtualized Software- Defined Networks (vSDN) and Artificial Intelligence (AI) play a pivotal supporting role in solving the above-mentioned constraints. Using the PDNS framework, we have proposed a novel slice backup algorithm leveraging Deep Learning (DL) neural network to orchestrate network latency and load efficiently. Our model has been trained using the available KPIs and incoming traffic is analyzed. The proposed solution performs stable load balancing between shared slices even if certain extreme conditions (slice unavailability) through intelligent resource allocation. The framework withstands service outage and always select the most suitable slice as a backup. Our results show latency-aware resource distribution for better network stability.  more » « less
Award ID(s):
2219741
PAR ID:
10535370
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-7340-8
Page Range / eLocation ID:
201 to 206
Format(s):
Medium: X
Location:
Gandhinagar, Gujarat, India
Sponsoring Org:
National Science Foundation
More Like this
  1. Next-generation optical metro-access networks are expected to support end-to-end virtual network slices for critical 5G services. However, disasters affecting physical infrastructures upon which network slices are mapped can cause significant disruption in these services. Operators can deploy recovery units or trucks to restore services based on slice requirements. In this study, we investigate the problem of slice-aware service restoration in metro-access networks with specialized recovery trucks to restore services after a disaster failure. We model the problem based on classical vehicle-routing problem to find optimal routes for recovery trucks to failure sites to provide temporary backup service until the network components are repaired. Our proposed slice-aware service-restoration approach is formulated as a mixed integer linear program with the objective to minimize penalty of service disruption across different network slices.We compare our slice-aware approach with a slice-unaware approach and show that our proposed approach can achieve significant reduction in service-disruption penalty 
    more » « less
  2. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less
  3. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises' service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less
  4. We present dAuth, an approach to device authentication in private cellular networks which refactors the responsibilities of authentication to enable multiple small private cellular networks to federate together to provide a more reliable and resilient service than could be achieved on their own. dAuth is designed to be backwards compatible with off-the-shelf 4G and 5G cellular devices and can be incrementally deployed today. It uses cryptographic secret sharing and a division of concerns between sensitive data stored with backup networks and non-sensitive public directory data to securely scale authentication across multiple redundant nodes operating among different and untrusted organizations. Specifically, it allows a collection of pre-configured backup networks to authenticate users on behalf of their home network while the home network is unavailable. We evaluate dAuth’s performance with production equipment from an active federated community network, finding that it is able to work with existing systems. We follow this with an evaluation using a simulated 5G RAN and find that it performs comparably to a standalone cloud-based 5G core at low load, and outperforms a centralized core at high load due to its innate load-sharing properties. 
    more » « less
  5. The emergence of diverse network applications demands more flexible and responsive resource allocation for networks. Network slicing is a key enabling technology that provides each network service with a tailored set of network resources to satisfy specific service requirements. The focus of this paper is the network slicing of access networks realized by Passive Optical Networks (PONs). This paper proposes a learning-based Dynamic Bandwidth Allocation (DBA) algorithm for PON access networks, considering slice-awareness, demand-responsiveness, and allocation fairness. Our online convex optimization-based algorithm learns the implicit traffic trend over time and determines the most robust window allocation that reduces the average latency. Our simulation results indicate that the proposed algorithm reduces the average latency by prioritizing delay-sensitive and heavily-loaded ONUs while guaranteeing a minimal window allocation to all ONUs. 
    more » « less