skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advanced Federated Learning-Empowered Edge-Cloud Framework for School Safety Prediction and Emergency Alert System
The safety and security of educational environments are paramount concerns for communities worldwide. Recent incidents of violence in schools underscore the urgent need for innovative and proactive safety measures that extend beyond traditional reactive approaches. In response to this imperative, we propose an Advanced Federated Learning- Empowered Edge-Cloud Framework for School Safety Prediction and Emergency Alert System, which is a groundbreaking solution designed to address the pressing challenges of ensuring school safety. In a world where educational institutions face escalating threats, this framework leverages the innovative approach of federated learning, enabling real-time threat detection and proactive alert generation while preserving data privacy. Challenges such as delayed response times, false alarms, and limited threat assessment protocols are met head-on through the integration of predictive algorithms, sensors, and edge computing. This transformative system not only revolutionizes security but also prioritizes the psychological well-being of students, staff, and visitors, fostering an environment conducive to learning. Its significance lies in its potential to prevent incidents, minimize harm, and bolster community confidence in school safety measures, ultimately contributing to the well- being and growth of future generations. Through this pioneering work, we aim to redefine school safety paradigms, making educational institutions safer and more secure for all.  more » « less
Award ID(s):
2219741
PAR ID:
10535374
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-1306-2
Page Range / eLocation ID:
507 to 512
Format(s):
Medium: X
Location:
Hoboken, NJ, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Active shooter incidents represent an increasing threat to American society, especially in commercial and educational buildings. In recent years, a wide variety of security countermeasures have been recommended by public and governmental agencies. Many of these countermeasures are aimed to increase building security, yet their impact on human behavior when an active shooter incident occurs remains underexplored. To fill this research gap, we conducted virtual experiments to evaluate the impact of countermeasures on human behavior during active shooter incidents. A total of 162 office workers and middle/high school teachers were recruited to respond to an active shooter incident in virtual office and school buildings with or without the implementation of multiple countermeasures. The experiment results showed countermeasures significantly influenced participants’ response time and decisions (e.g., run, hide, fight). Participants’ responses and perceptions of the active shooter incident were also contingent on their daily roles, as well as building and social contexts. Teachers had more concerns for occupants’ safety than office workers. Moreover, teachers had more positive perceptions of occupants in the school, whereas office workers had more positive perceptions of occupants in the office. 
    more » « less
  2. This lightning talk addresses the pressing need to enhance cybersecurity measures for Hawaii's critical infrastructure, focusing particularly on healthcare and transportation sectors. These sectors have faced significant cybersecurity challenges, with Oahu's transportation services experiencing major breaches and healthcare institutions like Queen's Health System and Malama I Ke Ola suffering from ransomware attacks since 2021. These incidents have led to severe disruptions and compromised sensitive data. Hawaii's geographic isolation, natural disaster risks, legacy systems, and workforce shortages exacerbate these issues. Additionally, emerging technologies such as AI and IoT further expand vulnerabilities. A comprehensive cybersecurity strategy is essential to mitigate these risks. This talk introduces the concept of a volunteer-supported Human-AI Synergy Hotline, which provides proactive advice, crisis management, and emotional support during and after cyber incidents. This innovative approach aims to enhance cybersecurity preparedness and resilience in Hawaii's critical sectors. 
    more » « less
  3. Safety and security education are important part of technology related education, because of recent number of increase in safety and security related incidents. Game based learning is an emerging and rapidly advancing forms of computer-assisted instruction. Game based learning for safety and security education enables students to learn concepts and skills without the risk of physical injury and security breach. In this paper, a pedestal grinder safety game and physical security game have been developed using industrial standard modeling and game development software. The average score of the knowledge test of grinder safety game was 82%, which is higher than traditional lecture only instruction method. In addition, the survey of physical security game shows 84% average satisfaction ratio from high school students who played the game during the summer camp. The results of these studies indicated that game based learning method can enhance students’ learning without potential harm to the students. 
    more » « less
  4. Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction. 
    more » « less
  5. This paper presents an innovative approach to DevOps security education, addressing the dynamic landscape of cybersecurity threats. We propose a student-centered learning methodology by developing comprehensive hands-on learning modules. Specifically, we introduce labware modules designed to automate static security analysis, empowering learners to identify known vulnerabilities efficiently. These modules offer a structured learning experience with pre-lab, hands-on, and post-lab sections, guiding students through DevOps concepts and security challenges. In this paper, we introduce hands-on learning modules that familiarize students with recognizing known security flaws through the application of Git Hooks. Through practical exercises with real-world code examples containing security flaws, students gain proficiency in detecting vulnerabilities using relevant tools. Initial evaluations conducted across educational institutions indicate that these hands-on modules foster student interest in software security and cybersecurity and equip them with practical skills to address DevOps security vulnerabilities. 
    more » « less