Abstract BackgroundEffective diabetes management requires precise glycemic control to prevent both hypoglycemia and hyperglycemia, yet existing machine learning (ML) and reinforcement learning (RL) approaches often fail to balance competing objectives. Traditional RL-based glucose regulation systems primarily focus on single-objective optimization, overlooking factors such as minimizing insulin overuse, reducing glycemic variability, and ensuring patient safety. Furthermore, these approaches typically rely on centralized data processing, which raises privacy concerns due to the sensitive nature of health care data. There is a critical need for a decentralized, privacy-preserving framework that can personalize blood glucose regulation while addressing the multiobjective nature of diabetes management. ObjectiveThis study aimed to develop and validate PRIMO-FRL (Privacy-Preserving Reinforcement Learning for Individualized Multi-Objective Glycemic Management Using Federated Reinforcement Learning), a novel framework that optimizes clinical objectives—maximizing time in range (TIR), reducing hypoglycemia and hyperglycemia, and minimizing glycemic risk—while preserving patient privacy. MethodsWe developed PRIMO-FRL, integrating multiobjective reward shaping to dynamically balance glucose stability, insulin efficiency, and risk reduction. The model was trained and tested using simulated data from 30 simulated patients (10 children, 10 adolescents, and 10 adults) generated with the Food and Drug Administration (FDA)–approved UVA/Padova simulator. A comparative analysis was conducted against state-of-the-art RL and ML models, evaluating performance using metrics such as TIR, hypoglycemia (<70 mg/dL), hyperglycemia (>180 mg/dL), and glycemic risk scores. ResultsThe PRIMO-FRL model achieved a robust overall TIR of 76.54%, with adults demonstrating the highest TIR at 81.48%, followed by children at 77.78% and adolescents at 70.37%. Importantly, the approach eliminated hypoglycemia, with 0.0% spent below 70 mg/dL across all cohorts, significantly outperforming existing methods. Mild hyperglycemia (180-250 mg/dL) was observed in adolescents (29.63%), children (22.22%), and adults (18.52%), with adults exhibiting the best control. Furthermore, the PRIMO-FRL approach consistently reduced glycemic risk scores, demonstrating improved safety and long-term stability in glucose regulation.. ConclusionsOur findings highlight the potential of PRIMO-FRL as a transformative, privacy-preserving approach to personalized glycemic management. By integrating federated RL, this framework eliminates hypoglycemia, improves TIR, and preserves data privacy by decentralizing model training. Unlike traditional centralized approaches that require sharing sensitive health data, PRIMO-FRL leverages federated learning to keep patient data local, significantly reducing privacy risks while enabling adaptive and personalized glucose control. This multiobjective optimization strategy offers a scalable, secure, and clinically viable solution for real-world diabetes care. The ability to train personalized models across diverse populations without exposing raw data makes PRIMO-FRL well-suited for deployment in privacy-sensitive health care environments. These results pave the way for future clinical adoption, demonstrating the potential of privacy-preserving artificial intelligence in optimizing glycemic regulation while maintaining security, adaptability, and personalization.
more »
« less
Decentralized and Secure Collaborative Framework for Personalized Diabetes Prediction
Diabetes is a global epidemic with severe consequences for individuals and healthcare systems. While early and personalized prediction can significantly improve outcomes, traditional centralized prediction models suffer from privacy risks and limited data diversity. This paper introduces a novel framework that integrates blockchain and federated learning to address these challenges. Blockchain provides a secure, decentralized foundation for data management, access control, and auditability. Federated learning enables model training on distributed datasets without compromising patient privacy. This collaborative approach facilitates the development of more robust and personalized diabetes prediction models, leveraging the combined data resources of multiple healthcare institutions. We have performed extensive evaluation experiments and security analyses. The results demonstrate good performance while significantly enhancing privacy and security compared to centralized approaches. Our framework offers a promising solution for the ethical and effective use of healthcare data in diabetes prediction.
more »
« less
- Award ID(s):
- 2218046
- PAR ID:
- 10634623
- Publisher / Repository:
- Biomedicines
- Date Published:
- Journal Name:
- Biomedicines
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2227-9059
- Page Range / eLocation ID:
- 1916
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to the same interpretation as standard centralized statistical models while achieving considerably stronger privacy protections and without significantly raising computational costs. This work is the first to apply modern and general federated learning methods that explicitly incorporate differential privacy to clinical and epidemiological research—across a spectrum of units of federation, model architectures, complexity of learning tasks and diseases. As a result, it enables health research participants to remain in control of their data and still contribute to advancing science—aspects that used to be at odds with each other.more » « less
-
The increasing adoption of smart home devices has raised significant concerns regarding privacy, security, and vulnerability to cyber threats. This study addresses these challenges by presenting a federated learning framework enhanced with blockchain technology to detect intrusions in smart home environments. The proposed approach combines knowledge distillation and transfer learning to support heterogeneous IoT devices with varying computational capacities, ensuring efficient local training without compromising privacy. Blockchain technology is integrated to provide decentralized, tamper-resistant access control through Role-Based Access Control (RBAC), allowing only authenticated devices to participate in the federated learning process. This combination ensures data confidentiality, system integrity, and trust among devices. This framework’s performance was evaluated using the N-BaIoT dataset, showcasing its ability to detect anomalies caused by botnets such as Mirai and BASHLITE across diverse IoT devices. Results demonstrate significant improvements in intrusion detection accuracy, particularly for resource-constrained devices, while maintaining privacy and adaptability in dynamic smart home environments. These findings highlight the potential of this blockchain-enhanced federated learning system to offer a scalable, robust, and privacy-preserving solution for securing smart homes against evolving threats.more » « less
-
Recent advances in deep learning have shown many successful stories in smart healthcare applications with data-driven insight into improving clinical institutions’ quality of care. Excellent deep learning models are heavily data-driven. The more data trained, the more robust and more generalizable the performance of the deep learning model. However, pooling the medical data into centralized storage to train a robust deep learning model faces privacy, ownership, and strict regulation challenges. Federated learning resolves the previous challenges with a shared global deep learning model using a central aggregator server. At the same time, patient data remain with the local party, maintaining data anonymity and security. In this study, first, we provide a comprehensive, up-to-date review of research employing federated learning in healthcare applications. Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning, such as data partitioning characteristics, data distributions, data protection mechanisms, and benchmark datasets. Finally, we point out several potential challenges and future research directions in healthcare applications.more » « less
-
The Internet of Medical Things (IoMT) is a network of interconnected medical devices, wearables, and sensors integrated into healthcare systems. It enables real-time data collection and transmission using smart medical devices with trackers and sensors. IoMT offers various benefits to healthcare, including remote patient monitoring, improved precision, and personalized medicine, enhanced healthcare efficiency, cost savings, and advancements in telemedicine. However, with the increasing adoption of IoMT, securing sensitive medical data becomes crucial due to potential risks such as data privacy breaches, compromised health information integrity, and cybersecurity threats to patient information. It is necessary to consider existing security mechanisms and protocols and identify vulnerabilities. The main objectives of this paper aim to identify specific threats, analyze the effectiveness of security measures, and provide a solution to protect sensitive medical data. In this paper, we propose an innovative approach to enhance security management for sensitive medical data using blockchain technology and smart contracts within the IoMT ecosystem. The proposed system aims to provide a decentralized and tamper-resistant plat- form that ensures data integrity, confidentiality, and controlled access. By integrating blockchain into the IoMT infrastructure, healthcare organizations can significantly enhance the security and privacy of sensitive medical data.more » « less
An official website of the United States government

