skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How does climate change impact social bees and bee sociality?
Abstract Climatic factors are known to shape the expression of social behaviours. Likewise, variation in social behaviour can dictate climate responses. Understanding interactions between climate and sociality is crucial for forecasting vulnerability and resilience to climate change across animal taxa.These interactions are particularly relevant for taxa like bees that exhibit a broad diversity of social states. An emerging body of literature aims to quantify bee responses to environmental change with respect to variation in key functional traits, including sociality. Additionally, decades of research on environmental drivers of social evolution may prove fruitful for predicting shifts in the costs and benefits of social strategies under climate change.In this review, we explore these findings to ask two interconnected questions: (a) how does sociality mediate vulnerability to climate change, and (b) how might climate change impact social organisation in bees? We highlight traits that intersect with bee sociality that may confer resilience to climate change (e.g. extended activity periods, diet breadth, behavioural thermoregulation) and we generate predictions about the impacts of climate change on the expression and distribution of social phenotypes in bees.The social evolutionary consequences of climate change will be complex and heterogeneous, depending on such factors as local climate and plasticity of social traits. Many contexts will see an increase in the frequency of eusocial nesting as warming temperatures accelerate development and expand the temporal window for rearing a worker brood. More broadly, climate‐mediated shifts in the abiotic and biotic selective environments will alter the costs and benefits of social living in different contexts, with cascading impacts at the population, community and ecosystem levels.  more » « less
Award ID(s):
2102006
PAR ID:
10535387
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Animal Ecology
Date Published:
Journal Name:
Journal of Animal Ecology
ISSN:
0021-8790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate is a fundamental driver of macroecological patterns in functional trait variation. However, many of the traits that have outsized effects on thermal performance are complex, multi‐dimensional, and challenging to quantify at scale.To overcome this challenge, we leveraged techniques in deep learning and computer vision to quantify hair coverage and lightness of bees, using images of a diverse and widely distributed sample of museum specimens.We demonstrate that climate shapes variation in these traits at a global scale, with bee lightness increasing with maximum environmental temperatures (thermal melanism hypothesis) and decreasing with annual precipitation (Gloger's Rule).We found that deserts are hotspots for bees covered in light‐coloured hairs, adaptations that may mitigate heat stress and represent convergent evolution with other desert organisms.These results support major ecogeographical rules in functional trait variation and emphasize the role of climate in shaping bee phenotypic diversity. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Trait variation across individuals and species influences the resistance and resilience of ecosystems to disturbance, and the ability of individuals to capitalize on postdisturbance conditions. In trees, the anatomical structure of xylem directly affects plant function and, consequently, it is a valuable lens through which to understand resistance and resilience to disturbance.To determine how hurricanes affect wood anatomy of tropical trees, we characterized a set of anatomical traits in wood produced before and after a major hurricane for 65 individuals of 10 Puerto Rican tree species. We quantified variation at different scales (among and within species, and within individuals) and determined trait shifts between the pre‐ and posthurricane periods. We also assessed correlations between traits and growth rates.While the majority of anatomical trait variation occurred among species, we also observed substantial variation within species and individuals. Within individuals, we found significant shifts for some traits that generally reflected increased hydraulic conductivity in the posthurricane period. We found weak evidence for an association between individual xylem anatomical traits and diameter growth rates.Ultimately, within‐individual variation of xylem anatomical traits observed in our study could be related to posthurricane recovery and overall growth (e.g. canopy filling). Other factors, however, likely decouple a relationship between xylem anatomy and diameter growth. While adjustments of wood anatomy may enable individual trees to capitalize on favourable postdisturbance conditions, these may also influence their future responses or vulnerability to subsequent disturbances. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  4. Phenology, the timing of recurrent biological events, is a key mechanism by which species adapt or acclimatize to variable environmental conditions, including those influenced by climate change. Measurable traits, including the onset and end of activity, peak activity, and duration, characterize the phenology of life events, and could be significant predictors of trends in population abundance or stability in a changing climate. Bees provide critical pollination services, and understanding the covariates of bee phenological traits can refine predictions on the vulnerabilities of bees and their services to climate change. We paired 16 years of monthly bee survey data (2002-2019) with climate data for 74 bee species in dryland ecosystems of central New Mexico, USA. Contrary to the current paradigm of temperature as the key driver of insect phenology, twice as many bee species had phenological sensitivity to precipitation (39%) than to temperature (20%). Among phenological traits, the end date of active flying periods was most sensitive to climate. Of the 20% of bee species for which precipitation predicted activity end date, 73% ended activity later in wetter years. Fifteen bee species (~20%) had phenological traits sensitive to temperature, but temperature sensitivity was idiosyncratic, and only four species had earlier onset in warmer years, as expected from results in other biomes. Oligolectic (diet specialist) bee species began, peaked, and ended activity later in the year than polylectic (generalist) species, but phenological traits did not correlate with sociality. All phenological traits showed phylogenetic signal, suggesting evolutionary conservatism of phenology among the common bees of central New Mexico drylands. Finally, species with long activity durations were more common, had greater temporal stability in abundance from year to year, and were less likely to decline over time, perhaps because of their longer window for resource acquisition. Our results suggest that drier climates of the future may shift bee phenological activities toward earlier onset, peak, and end dates, that bees with short activity durations may be among the most sensitive to declines in future climates, and that both generalist and social bees may be able to resist or recover from climate change if they have long durations of flight activity. 
    more » « less
  5. Summary Predicting shifts in species composition with global change remains challenging, but plant functional traits provide a key link to scale from plant to community and ecosystem levels. The extent to which functional trait shifts may mediate ecosystem response to climate change remains a critical question.We ran point‐scale Community Land Model (CLM) simulations with site‐specific functional trait and phenology observations to represent alpine tundra growth strategies. We validated our results with site observations and compared parameterized results to those using the default parameterization. We then quantified the relative contribution of plant functional trait shifts vs climate change scenarios (and the resulting phenological shifts) to uncertainty in future tundra ecosystem productivity outcomes.We found that using community‐specific functional traits and phenology observations significantly improved productivity estimates compared with overestimates in a default simulation. Uncertainty in potential plant trait shifts often had a larger effect on ecosystem productivity responses than uncertainty in the forced response from different climate change scenarios.These findings highlight the key role of functional traits in shaping vegetation responses to climate change and the value of incorporating site‐level measurements into land models to more accurately forecast climate change impacts on ecosystem function. 
    more » « less