Abstract Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant–pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well‐understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time‐series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community‐wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long‐term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.
more »
« less
Phenological activities of desert bees track rainfall more than temperature and predict temporal abundance trends over 16 years
Phenology, the timing of recurrent biological events, is a key mechanism by which species adapt or acclimatize to variable environmental conditions, including those influenced by climate change. Measurable traits, including the onset and end of activity, peak activity, and duration, characterize the phenology of life events, and could be significant predictors of trends in population abundance or stability in a changing climate. Bees provide critical pollination services, and understanding the covariates of bee phenological traits can refine predictions on the vulnerabilities of bees and their services to climate change. We paired 16 years of monthly bee survey data (2002-2019) with climate data for 74 bee species in dryland ecosystems of central New Mexico, USA. Contrary to the current paradigm of temperature as the key driver of insect phenology, twice as many bee species had phenological sensitivity to precipitation (39%) than to temperature (20%). Among phenological traits, the end date of active flying periods was most sensitive to climate. Of the 20% of bee species for which precipitation predicted activity end date, 73% ended activity later in wetter years. Fifteen bee species (~20%) had phenological traits sensitive to temperature, but temperature sensitivity was idiosyncratic, and only four species had earlier onset in warmer years, as expected from results in other biomes. Oligolectic (diet specialist) bee species began, peaked, and ended activity later in the year than polylectic (generalist) species, but phenological traits did not correlate with sociality. All phenological traits showed phylogenetic signal, suggesting evolutionary conservatism of phenology among the common bees of central New Mexico drylands. Finally, species with long activity durations were more common, had greater temporal stability in abundance from year to year, and were less likely to decline over time, perhaps because of their longer window for resource acquisition. Our results suggest that drier climates of the future may shift bee phenological activities toward earlier onset, peak, and end dates, that bees with short activity durations may be among the most sensitive to declines in future climates, and that both generalist and social bees may be able to resist or recover from climate change if they have long durations of flight activity.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10615768
- Publisher / Repository:
- UNM Digital Repository
- Date Published:
- Format(s):
- Medium: X
- Institution:
- The University of New Mexico
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate change‐induced range shifts can disrupt interactions among species by moving them in and out of ecological communities. These disruptions can include impacts on competition for shared resources. Bumble bees (Bombusspp.) are important pollinators shifting their range upwards in elevation in response to climate change. These shifts could lead to altered competition among species and threaten co‐existence. This could be particularly worrying at the tops of mountain ranges where bumble bees may no longer be able to move up to higher elevations to track climate change. To better understand this issue, we investigated changes in diet niche overlap among bumble bee species along a 2296 m elevation gradient in the southern Rocky Mountains. Additionally, we investigated how morphological and phenological traits impact diet composition (flower species visited) among bumble bee species and explored a simple simulation to understand how the continued upward movement of bumble bee species under climate change into the mountaintop may affect trait overlap of newly co‐occurring species. We found that diet niche overlap among bumble bee species increased with elevation. We also found that differences in morphological and phenological traits (body size, tongue length, date of activity) were correlated with differences in diet composition among bumble bee species. Finally, we described how the co‐occurrence of bumble bee species from lower elevations with mountaintop species would lead to increased trait overlap and likely more species sharing similar flowers. These shifts could lead to increased competition for high‐elevation restricted species on mountaintops and exacerbate the effects of climate change on high‐elevation bumble bees.more » « less
-
Climate change can lead to “secondary extinction risks” for plants owing to the decoupling of life-cycle events of plants and their pollinators (i.e., phenological mismatch). However, forecasting secondary extinction risk under future climate change remains challenging. We developed a new framework to quantify plants’ secondary extinction risk associated with phenological mismatch with bees using ca. 15,000 crowdsourced specimen records of Viola species and their solitary bee pollinators spanning 120 years across the eastern United States. We further examined latitudinal patterns in secondary extinction risk and explored how latitudinal variation in plant-pollinator specialization influence this risk. Secondary extinction risk of Viola spp. increases with latitude, indicating that future climate change likely will pose a greater threat to plant-bee pollinator networks at northern latitudes. Additionally, the sensitivity of secondary extinction risk to phenological mismatch with both generalist and specialist bee pollinators decreases with latitude: specialist bees display a sharper decrease at higher latitudes. Our findings demonstrate that existing conservation priorities identified solely based on primary extinction risk directly caused by climate change may not be sufficient to support self-sustaining populations of plants. Incorporating secondary extinction risk resulting from ecological mismatches between plants and pollinators into future global conservation frameworks should be carefully considered.more » « less
-
Abstract Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.more » « less
-
Abstract Advancing spring phenology is a well documented consequence of anthropogenic climate change, but it is not well understood how climate change will affect the variability of phenology year to year. Species' phenological timings reflect the adaptation to a broad suite of abiotic needs (e.g., thermal energy) and biotic interactions (e.g., predation and pollination), and changes in patterns of variability may disrupt those adaptations and interactions. Here, we present a geographically and taxonomically broad analysis of phenological shifts, temperature sensitivity, and changes in interannual variability encompassing nearly 10,000 long‐term phenology time series representing more than 1000 species across much of the Northern Hemisphere. We show that the timings of leaf‐out, flowering, insect first‐occurrence, and bird arrival were the most sensitive to temperature variation and have advanced at the fastest pace for early‐season species in colder and less seasonal regions. We did not find evidence for changing variability in warmer years in any phenophase groups, although leaf‐out and flower phenology have become moderately but significantly less variable over time. Our findings suggest that climate change has not to this point fundamentally altered the patterns of interannual phenological variability.more » « less
An official website of the United States government

