skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High frequency turbidity data and storm event characteristics of three urban streams in Cleveland, Ohio
This dataset contains turbidity data and storm event characters of three urban watersheds in Cuyahoga County, Ohio. Turbidity data were collected at a frequency of 10 minutes using in-situ Cyclop-7 turbidimeters designed by Turner Designs and integrated with a Cyclops-7 logger by Precision Measurement Engineering, Inc. Data were collected for three years from September 2018 to 2021. Turbidity data is harmonized with instantaneous discharge data from USGS stream gages. Event characteristics contains runoff, precipitation and antecedent characteristics. The data support the findings of the study titled "Urbanization and Suspended Sediment Transport Dynamics: A Comparative Study of Watersheds with Varying Degree of Urbanization using Concentration-Discharge Hysteresis".  more » « less
Award ID(s):
1805319 2319007
PAR ID:
10535420
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Hydroshare
Date Published:
Subject(s) / Keyword(s):
geomorphology urban watersheds stream monitoring water quality hydrology suspended sediment turbidity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Las Vegas valley has undergone significant development, thus increasing urban flooding. This study analyzes the impacts of urban development on urban flooding in the Flamingo watershed by using a watershed model. The input data includes precipitation, soil characteristics, elevation, and land cover. Urban development is incorporated through increasing percent impervious. Sub-watersheds and streamlines were delineated in ArcGIS using digital elevation model (DEM) dataset. Natural Resources Conservation Service (NRCS) curve-number method was used for the calculation of runoff. The Hydrologic Engineering Center-Hydrologic Management System (HEC-HMS) was used to estimate the discharge hydrograph. The model was calibrated through changing the curve number of the sub-basins. Two urbanization scenarios created with a 5% and 10% increase in impervious surfaces were generated. The results showed that peak discharge occurred earlier due to increase in impervious surfaces. Moreover, the total discharge volume and peak discharge for a given storm event were increasing due to increased imperviousness from urbanization. This study provides useful insight into a hydrological response to urban development that can be helpful in flood remediation. 
    more » « less
  2. Abstract Coral reefs near high human population areas suffer from sedimentation and increased turbidity due to coastal development. However, there is limited research on how key species respond to turbidity caused by terrigenous sediment and how this response may change with increased water temperatures. This study investigated the effects of ambient and elevated turbidity (+ 26 NTU) in combination with ambient (27.1 °C) and elevated temperature (+ 4.1 °C; 31.2 °C) on the dominant Hawaiian reef coralMontipora capitata, collected from two Kāneʻohe Bay watersheds with distinct environmental histories. Using intermittent flow respirometry, we found that acute (12 h) exposure to elevated turbidity and temperature impacted algal symbionts (Symbiodinium spp.) but not the coral host, suggesting a potential delayed host physiological response. Corals from south Kāneʻohe Bay, where restricted water circulation and urbanization have degraded water quality, were more sensitive to stressors than those from the less-impacted northern sites, indicating that physiological responses vary by location and may be influenced by watershed conditions. The findings suggest that while short-term turbidity and warming impactSymbiodinium spp.immediately, prolonged exposure may lead to cascading effects on the coral host. Understanding these species-specific and location-dependent responses enhances our ability to guide restoration and conservation efforts for coral ecosystems facing both local (turbidity) and global (warming) stressors.  
    more » « less
  3. This dataset contains high-frequency water quality data for three urban stream locations in the great Boston, Massachusetts metropolitan area. Multiparameter sondes with sensors to measure temperature, pH, specific conductivity, optical dissolved oxygen (DO), turbidity, colored dissolved organic matter (CDOM), and optical brighteners (OB) were deployed from 23 November 2021 to 20 December 2022. Data were collected at 15-minute intervals. 
    more » « less
  4. Code for analyses presented in: Fork, M.L., J. Fick, A.J. Reisinger, and E.J. Rosi. "Dosing the coast: Leaking sewage infrastructure delivers large annual loads and dynamic mixtures of pharmaceuticals to urban rivers." In press at Environmental Science and Technology. Two markdown files contains code to pre-process other data and to analyze grab samples from BES streams collected weekly from 2 Nov 2017 through 15 Nov 2018 and analyzed for 92 target pharmaceuticals. Data and methods are available via EDI at https://doi.org/10.6073/pasta/36453abc14ce8d6a33711231fdee9792. Briefly, the analyses here: A) examine spatial and temporal variability in pharmaceutical detections and concentrations among 7 BES watersheds, and B) combine measured concentrations at the watershed outlet (GFCP) with USGS streamflow data to estimate annual loads of pharmaceuticals by resampling or by interpolating concentrations over the discharge record. 
    more » « less
  5. Locations of groundwater discharging to surface water are hydrologically and ecologically important for nutrient processing and thermal refugia, yet little is known about the spatial distribution of groundwater discharges at the river network scale. Groundwater discharge locations can be used to identify anomalous groundwater discharging to surface water as colder groundwater interfaces with warmer surface water in late summer. This data release contains GPS locations, thermal infrared images, and direct temperature measurements of groundwater discharges throughout the Farmington and Housatonic River watersheds. These data were collected in late summer/ early fall 2019 to characterize the spatial distribution of groundwater discharges throughout the Farmington and Housatonic River networks. The initial data release contains groundwater discharge locations and associated thermal images along the Salmon Brook River in the Farmington River watershed. Additional data for the Farmington and Housatonic River watersheds will be added to this dataset in the future. This dataset contains 3 files: 1) SalmonBrook_FLIR.zip is a zipped directory containing thermal infrared and real color images. 2) SalmonBrook_Image_Details.csv contains attribute information for each thermal image. 3) SalmonBrook_Seeps.shp is an ESRI shapefile of the groundwater discharge locations with FLIR thermal images and field notes. Files associated with this shapefile include: the database file SalmonBrook_Seeps.dbf, the projection file SalmonBrook_Seeps.prj, and the geodatabse file SalmonBrook_Seeps.shx. 4) LegacyN_FLIR_2019_readme is a high level readme text file that describes all of the files on the root landing page. 
    more » « less