Abstract We propose a very fast approximate Markov chain Monte Carlo sampling framework that is applicable to a large class of sparse Bayesian inference problems. The computational cost per iteration in several regression models is of order O(n(s+J)), where n is the sample size, s is the underlying sparsity of the model, and J is the size of a randomly selected subset of regressors. This cost can be further reduced by data sub-sampling when stochastic gradient Langevin dynamics are employed. The algorithm is an extension of the asynchronous Gibbs sampler of Johnson et al. [(2013). Analyzing Hogwild parallel Gaussian Gibbs sampling. In Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) (Vol. 2, pp. 2715–2723)], but can be viewed from a statistical perspective as a form of Bayesian iterated sure independent screening [Fan, J., Samworth, R., & Wu, Y. (2009). Ultrahigh dimensional feature selection: Beyond the linear model. Journal of Machine Learning Research, 10, 2013–2038]. We show that in high-dimensional linear regression problems, the Markov chain generated by the proposed algorithm admits an invariant distribution that recovers correctly the main signal with high probability under some statistical assumptions. Furthermore, we show that its mixing time is at most linear in the number of regressors. We illustrate the algorithm with several models.
more »
« less
Subdata Selection With a Large Number of Variables
Subdata selection from big data is an active area of research that facilitates inferences based on big data with limited computational expense. For linear regression models, the optimal design-inspired Information-Based Optimal Subdata Selection (IBOSS) method is a computationally efficient method for selecting subdata that has excellent statistical properties. But the method can only be used if the subdata size, k, is at last twice the number of regression variables, p. In addition, even when $$k\ge 2p$$, under the assumption of effect sparsity, one can expect to obtain subdata with better statistical properties by trying to focus on active variables. Inspired by recent efforts to extend the IBOSS method to situations with a large number of variables p, we introduce a method called Combining Lasso And Subdata Selection (CLASS) that, as shown, improves on other proposed methods in terms of variable selection and building a predictive model based on subdata when the full data size n is very large and the number of variables p is large. In terms of computational expense, CLASS is more expensive than recent competitors for moderately large values of n, but the roles reverse under effect sparsity for extremely large values of n.
more »
« less
- PAR ID:
- 10535424
- Publisher / Repository:
- New England Statistical Society
- Date Published:
- Journal Name:
- The New England Journal of Statistics in Data Science
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2693-7166
- Page Range / eLocation ID:
- 426 to 438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
t is well-known that the statistical performance of Lasso can suffer significantly when the covariates of interest have strong correlations. In particular, the prediction error of Lasso becomes much worse than computationally inefficient alternatives like Best Subset Selection. Due to a large conjectured computational-statistical tradeoff in the problem of sparse linear regression, it may be impossible to close this gap in general. In this work, we propose a natural sparse linear regression setting where strong correlations between covariates arise from unobserved latent variables. In this setting, we analyze the problem caused by strong correlations and design a surprisingly simple fix. While Lasso with standard normalization of covariates fails, there exists a heterogeneous scaling of the covariates with which Lasso will suddenly obtain strong provable guarantees for estimation. Moreover, we design a simple, efficient procedure for computing such a "smart scaling." The sample complexity of the resulting "rescaled Lasso" algorithm incurs (in the worst case) quadratic dependence on the sparsity of the underlying signal. While this dependence is not information-theoretically necessary, we give evidence that it is optimal among the class of polynomial-time algorithms, via the method of low-degree polynomials. This argument reveals a new connection between sparse linear regression and a special version of sparse PCA with a near-critical negative spike. The latter problem can be thought of as a real-valued analogue of learning a sparse parity. Using it, we also establish the first computational-statistical gap for the closely related problem of learning a Gaussian Graphical Model.more » « less
-
Abstract. Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization. These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite.more » « less
-
Both the computational costs and the accuracy of the invariant-imbedding T-matrix method escalate with increasing the truncation numberNat which the expansions of the electromagnetic fields in terms of vector spherical harmonics are truncated. Thus, it becomes important in calculation of the single-scattering optical properties to chooseNjust large enough to satisfy an appropriate convergence criterion; thisNwe call the optimal truncation number. We present a new convergence criterion that is based on the scattering phase function rather than on the scattering cross section. For a selection of homogeneous particles that have been used in previous single-scattering studies, we consider how the optimalNmay be related to the size parameter, the index of refraction, and particle shape. We investigate a functional form for this relation that generalizes previous formulae involving only size parameter, a form that shows some success in summarizing our computational results. Our results indicate clearly the sensitivity of optimal truncation number to the index of refraction, as well as the difficulty of cleanly separating this dependence from the dependence on particle shape.more » « less
-
Big data is ubiquitous in various fields of sciences, engineering, medicine, social sciences, and humanities. It is often accompanied by a large number of variables and features. While adding much greater flexibility to modeling with enriched feature space, ultra-high dimensional data analysis poses fundamental challenges to scalable learning and inference with good statistical efficiency. Sure independence screening is a simple and effective method to this endeavor. This framework of two-scale statistical learning, consisting of large-scale screening followed by moderate-scale variable selection introduced in Fan and Lv (2008), has been extensively investigated and extended to various model settings ranging from parametric to semiparametric and nonparametric for regression, classification, and survival analysis. This article provides an overview on the developments of sure independence screening over the past decade. These developments demonstrate the wide applicability of the sure independence screening based learning and inference for big data analysis with desired scalability and theoretical guarantees.more » « less
An official website of the United States government

