skip to main content


This content will become publicly available on June 1, 2025

Title: Impact of Engineering Course Participation on Students’ Attitudinal Factors: A Replication Study (Evaluation)
Engineering education, with its focus on design and problem solving, has been shown to be fertile ground for encouraging students’ further development of their fundamental math and science skills in a way that they find relevant and engaging, and for promoting interest in STEM more broadly. To capitalize on these positive aspects of the engineering context, researchers developed, implemented, and studied a three-year engineering curriculum for grades 6 – 8 that utilizes the engineering design process and problem-based learning. In this semester-long elective course, students work through a series of design challenges within a given context (a carnival, airplanes and flight, and robotics, respectively, for 6th, 7th and 8th grades) and learn engineering content as well as practice fundamental math and science skills. This curriculum was developed and researched as part of an earlier project; in that work, course participation was linked with increased academic achievement on state-wide math and science assessments as well as heightened cognitive and behavioral engagement in STEM and science interest [1]. The current work seeks to replicate the findings of this earlier study in a different and larger school district while a) expanding the research foci to include teacher training and teachers’ pedagogical content knowledge and b) refining the curriculum materials including the teacher website and support materials. In this paper, we present the research strand focusing on the impact of the course on students’ attitudinal factors including engagement, science interest, and science and math anxiety. These factors were measured in each semester-long course using a pre-post survey design. Survey items are primarily from validated instruments and are similar to those used in prior research on this curriculum and its impact on students; prior research demonstrated good reliability, with alpha values ranging from 0.84 to 0.91 for each construct [1]. We compare students’ levels of engagement, science interest, and math and science anxiety at the pre and post time points to understand whether and how participating in the course influences their standing on these variables. . Open-ended survey items were used as a supplementary data source. The preliminary results from the first year of implementation (2022-2023 academic year) suggest that similar to the original study, there is an increase across some of the student constructs, including student engagement. This finding was also supported by engineering teachers’ input about student engagement in the classroom. As the study progresses into its planned 2nd and 3rd years of curriculum implementation, we will be able to further discern the extent to which multiple years of course enrollment might differentially impact the attitudinal factors of interest (i.e., dosage effects).  more » « less
Award ID(s):
2101441
NSF-PAR ID:
10535428
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This Complete Research paper will describe the implementation of an introductory course (ENGR194) for first semester engineering students. The course is meant to improve retention and academic success of engineering first-year students in the College of Engineering at the University of Illinois at Chicago. The implementation of this course is part of an ongoing National Science Foundation (NSF) Scholarships in Science, Technology, Engineering, and Math (S-STEM) project. This paper reports on the impact of combinatorial enrollment in ENGR194 and a previously described two-week Summer Bridge Program (SBP) offered only for entering S-STEM scholars before their first semester. To measure the impact of this course on student retention and academic success, various evaluation metrics are compared for three separate Comparison Groups (C-Groups) of students. The results show that the ENGR194 course had a significant positive impact on the first-year retention rate. The results also revealed that students who participated in both ENGR194 and SBP (C-Group 1) made changes to their declared majors earlier than students who had only taken ENGR 123 or neither of the courses (C-Groups 2 and 3 respectively). Furthermore, students in C-Group 1 received better grades in math and science than their peers, and students in C-Groups 1 and 2 had significantly higher GPAs than their peers in C-Group 3. 
    more » « less
  2. null (Ed.)
    Nanoscience and nanotechnology play a significant role in every field of our society. Nanotechnology is the backbone of high-tech industries and widely used in consumer products and industrial applications. Therefore, it is essential to highlight the importance of nanoscience and nanotechnology to undergraduate students and explain the science behind nanotechnology. For this purpose, an upper-level elective mechanical engineering course, Nanoscale Science and Engineering, is designed and added to the mechanical and mechatronic engineering curriculum. This course introduces students to the interdisciplinary field of nanoscience and engineering including the areas of engineering, materials science, chemistry, and physics. The topics covered include advanced materials, synthesis, and modification of nanomaterials, properties of nanomaterials, materials characterization, nanofabrication methods, and applications. It has three modules, which are formal lectures, guest speakers, and projects. Projects will help students learn to conduct a literature search, critically review scientific articles, and learn advanced materials characterization techniques on a given topic. They will further have a chance to propose their own ideas for potential applications and asked to give a detailed methodology to execute the project. In this work-in-progress study, we present the impact of the Nanoscale Science and Engineering course on undergraduate mechanical and mechatronic engineering students. Students were invited to complete a survey at the beginning of the semester, which will be also given to the students, at the end of the semester. The survey consists of 15 questions, which are aimed to analyze the pre-existing knowledge of students in nanotechnology-related topics and their interest level to increase their knowledge and advance their career in a nanotechnology-related field. In order to assess the impact of the course on students, the results of the survey will be compared. Student demographics will be included in the results. Possible changes in course content to improve student engagement in nanotechnology will be discussed. The purpose of this course is to introduce undergraduate engineering students to nanotechnology. The inclusion of Nanoscale Science and Engineering course to the undergraduate engineering curriculum has a significant role in the advancement of nanotechnology. Students graduating with a solid understanding of broad applications of nanotechnology and advanced material fabrication and characterization techniques will have a focused start in their graduate research and education or faster adaptation to nanotechnology-related industrial job positions. 
    more » « less
  3. null (Ed.)
    Research on K-12 integrated STEM settings suggests that engineering design activities play an important role in supporting students’ science learning. Moreover, the National Academies of Sciences, Engineering, and Medicine named improvement in science achievement as an objective of K-12 engineering education. Despite promising findings and the theorized importance of engineering education on science learning, there is little literature that investigates the impact of independent engineering design courses on students’ science learning at the high school level. This sparse exploration motivates our work-in-progress study, which explores the impact of high school students’ exposure to engineering design curriculum on their interest in science through a semi-structured student focus group method. This study is a part of a National Science Foundation-funded project that investigates the implementation of [de-identified program], a yearlong high school course that introduces students across the United States to engineering design principles. The Fall 2020 student focus group protocol built on the [de-identified program] 2019-2020 protocol with the addition of a science interest item to the existing engineering self-efficacy and interest items. Approximately thirty-minute semi-structured student focus groups were conducted and recorded via Zoom, then the transcripts and notes were analyzed using an in-vivo coding method. Our preliminary findings suggest that future studies should aim to gain a deeper understanding of the influence standalone engineering design courses have on students’ science interests and explore the role engineering design teachers play in increasing students’ interest in science. 
    more » « less
  4. As part of a National Science Foundation-funded initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Clemson’s NSF Revolutionizing Engineering Departments (RED) program is called the Arch Initiative. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. Through a project-based learning approach, Springer courses mimic the senior capstone experience by immersing students in a semester-long practical application of civil engineering, exposing them to concepts and tools in a way that challenges students to develop new knowledge that they will build on and use during their junior and senior years. In the 2019 spring semester, a pilot of the first Springer course introduced students to three civil engineering sub-disciplines: construction management, water resources, and transportation. The remaining sub-disciplines are covered in a follow-on Springer 2 pilot. The purpose of this paper is to describe all aspects of the Springer 1 course, including course content, teaching methods, faculty resources, and the design and results of a Student Assessment of Learning Gains (SALG) survey to assess students’ learning outcomes. The feedback from the SALG indicated positive attitudes towards course activities and content. Challenges for full-scale implementation of the Springer course sequence as a requirement in the transformed curriculum are also discussed. 
    more » « less
  5. Student-centered educational system is needed for better educational outcomes. Technology enabled pedagogy has helped immensely during the pandemic times when rapid transition to remote learning was essential. This poster reports findings on year one of a two-year research study to utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. This poster describes a quasi-experimental mixed methods study on implementing mobile devices (iPad and Pencil) and a technology-enhanced curriculum in an undergraduate thermal-fluids engineering course, a foundational engineering class. The technology-enabled curriculum was fully integrated in the thermal-fluids course to deliver content and to facilitate student engagement with the content, instructor, and fellow students. This approach leveraged the social-constructivist learning theory - a connected community of learners with classroom peers and co-construction of knowledge where the instructor’s role is that of a subject matter expert who facilitates learning. To examine the impact of mobile devices on student learning, in this two-year study (year one fall 2021 - spring 2022), the following research questions were addressed, hypothesizing improvements in the areas of engagement, enhancement of learning outcomes, and extension of learning to real-life engineering scenarios: (1) Does mobile device use facilitate engagement in thermal-fluid science course content? (Engagement), (2) Does mobile device use increase learning of identified difficult concepts in thermal-fluid science courses as indicated by increased achievement scores? (Enhancement) and (3) What are student perceptions of using mobile devices for solving real-life problems? This poster will provide an overview of the research plan and describe some preliminary research efforts based on year 1 of the project efforts. This work is supported by the NSF: Research Initiation in Engineering Formation (RIEF). 
    more » « less