skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Engineering Course Participation on Students’ Attitudinal Factors: A Replication Study (Evaluation)
Engineering education, with its focus on design and problem solving, has been shown to be fertile ground for encouraging students’ further development of their fundamental math and science skills in a way that they find relevant and engaging, and for promoting interest in STEM more broadly. To capitalize on these positive aspects of the engineering context, researchers developed, implemented, and studied a three-year engineering curriculum for grades 6 – 8 that utilizes the engineering design process and problem-based learning. In this semester-long elective course, students work through a series of design challenges within a given context (a carnival, airplanes and flight, and robotics, respectively, for 6th, 7th and 8th grades) and learn engineering content as well as practice fundamental math and science skills. This curriculum was developed and researched as part of an earlier project; in that work, course participation was linked with increased academic achievement on state-wide math and science assessments as well as heightened cognitive and behavioral engagement in STEM and science interest [1]. The current work seeks to replicate the findings of this earlier study in a different and larger school district while a) expanding the research foci to include teacher training and teachers’ pedagogical content knowledge and b) refining the curriculum materials including the teacher website and support materials. In this paper, we present the research strand focusing on the impact of the course on students’ attitudinal factors including engagement, science interest, and science and math anxiety. These factors were measured in each semester-long course using a pre-post survey design. Survey items are primarily from validated instruments and are similar to those used in prior research on this curriculum and its impact on students; prior research demonstrated good reliability, with alpha values ranging from 0.84 to 0.91 for each construct [1]. We compare students’ levels of engagement, science interest, and math and science anxiety at the pre and post time points to understand whether and how participating in the course influences their standing on these variables. . Open-ended survey items were used as a supplementary data source. The preliminary results from the first year of implementation (2022-2023 academic year) suggest that similar to the original study, there is an increase across some of the student constructs, including student engagement. This finding was also supported by engineering teachers’ input about student engagement in the classroom. As the study progresses into its planned 2nd and 3rd years of curriculum implementation, we will be able to further discern the extent to which multiple years of course enrollment might differentially impact the attitudinal factors of interest (i.e., dosage effects).  more » « less
Award ID(s):
2101441
PAR ID:
10535428
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. Broadening the participation of underrepresented students in computer science fields requires careful design and implementation of culturally responsive curricula and technologies. Culturally Situated Design Tools (CSDTs) address this by engaging students in historic, cultural, and meaningful design projects based on community practices. To date, CSDT research has only been conducted in short interventions outside of CS classrooms. This paper reports on the first semester-long introductory CS course based on CSDTs, which was piloted with 51 high school students during the 2017-2018 school year. The goal of this study was to examine if a culturally responsive computing curriculum could teach computer science principles and improve student engagement. Pre-post tests, field notes, weekly teacher meetings, formative assessments, and teacher and student interviews were analyzed to assess successes and failures during implementation. The results indicate students learned the conceptual material in 6 months rather than in the 9 months previously required by the teacher. Students were also able to apply these concepts afterward when programming in Python, implying knowledge transfer. However, student opinions about culture and computing didn't improve, and student engagement was below initial expectations. Thus we explore some of the many challenges: keeping a fully integrated cultural curriculum while satisfying CS standards, maintaining student engagement, and building student agency and self-regulation. We end with a brief description for how we intend to address some of these challenges in the second iteration of this program, scheduled for fall 2018. After which a study is planned to compare this curriculum to others. 
    more » « less
  2. NA (Ed.)
    This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration. 
    more » « less
  3. null (Ed.)
    This Complete Research paper will describe the implementation of an introductory course (ENGR194) for first semester engineering students. The course is meant to improve retention and academic success of engineering first-year students in the College of Engineering at the University of Illinois at Chicago. The implementation of this course is part of an ongoing National Science Foundation (NSF) Scholarships in Science, Technology, Engineering, and Math (S-STEM) project. This paper reports on the impact of combinatorial enrollment in ENGR194 and a previously described two-week Summer Bridge Program (SBP) offered only for entering S-STEM scholars before their first semester. To measure the impact of this course on student retention and academic success, various evaluation metrics are compared for three separate Comparison Groups (C-Groups) of students. The results show that the ENGR194 course had a significant positive impact on the first-year retention rate. The results also revealed that students who participated in both ENGR194 and SBP (C-Group 1) made changes to their declared majors earlier than students who had only taken ENGR 123 or neither of the courses (C-Groups 2 and 3 respectively). Furthermore, students in C-Group 1 received better grades in math and science than their peers, and students in C-Groups 1 and 2 had significantly higher GPAs than their peers in C-Group 3. 
    more » « less
  4. null (Ed.)
    Nanoscience and nanotechnology play a significant role in every field of our society. Nanotechnology is the backbone of high-tech industries and widely used in consumer products and industrial applications. Therefore, it is essential to highlight the importance of nanoscience and nanotechnology to undergraduate students and explain the science behind nanotechnology. For this purpose, an upper-level elective mechanical engineering course, Nanoscale Science and Engineering, is designed and added to the mechanical and mechatronic engineering curriculum. This course introduces students to the interdisciplinary field of nanoscience and engineering including the areas of engineering, materials science, chemistry, and physics. The topics covered include advanced materials, synthesis, and modification of nanomaterials, properties of nanomaterials, materials characterization, nanofabrication methods, and applications. It has three modules, which are formal lectures, guest speakers, and projects. Projects will help students learn to conduct a literature search, critically review scientific articles, and learn advanced materials characterization techniques on a given topic. They will further have a chance to propose their own ideas for potential applications and asked to give a detailed methodology to execute the project. In this work-in-progress study, we present the impact of the Nanoscale Science and Engineering course on undergraduate mechanical and mechatronic engineering students. Students were invited to complete a survey at the beginning of the semester, which will be also given to the students, at the end of the semester. The survey consists of 15 questions, which are aimed to analyze the pre-existing knowledge of students in nanotechnology-related topics and their interest level to increase their knowledge and advance their career in a nanotechnology-related field. In order to assess the impact of the course on students, the results of the survey will be compared. Student demographics will be included in the results. Possible changes in course content to improve student engagement in nanotechnology will be discussed. The purpose of this course is to introduce undergraduate engineering students to nanotechnology. The inclusion of Nanoscale Science and Engineering course to the undergraduate engineering curriculum has a significant role in the advancement of nanotechnology. Students graduating with a solid understanding of broad applications of nanotechnology and advanced material fabrication and characterization techniques will have a focused start in their graduate research and education or faster adaptation to nanotechnology-related industrial job positions. 
    more » « less
  5. Pre-college engineering teachers bring unique backgrounds to their teaching practice. Many engineering teachers follow a non-traditional route to teaching engineering, often coming to engineering from teaching other subjects or from careers in other fields. Among the many variations influencing engineering teaching practices is pedagogical content knowledge (PCK), defined as the “the knowledge of, reasoning behind, and enactment of the teaching of particular topics in a particular way with particular students for particular reasons for enhanced student outcomes [1]”. This multiple case study explores the PCK of five middle school engineering teachers implementing the same middle school engineering curriculum, STEM-ID. The 18- week STEM-ID curriculum engages students in contextualized challenges that incorporate foundational mathematics and science practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics. Drawing on observation and interview data collected over the course of two semester-long implementations of STEM-ID, the study addresses the research question: What variations in PCK are evident among engineering teachers with different professional backgrounds and levels of experience? Five teachers were purposively selected from a larger group of teachers implementing the curriculum because they represent a range of professional backgrounds: one veteran engineering teacher, one former Math teacher, one former Science teacher, one former English/Language Arts teacher, and one novice teacher with a background in the software industry. The study utilizes the Refined Consensus Model of PCK to investigate connections between teacher backgrounds, personal PCK (pPCK), the personalized professional knowledge held by teachers, and enacted PCK (ePCK), the knowledge teachers draw on to engage in pedagogical reasoning while planning, teaching, and reflecting on their practice. Observation, interview, and survey data were triangulated to develop narrative case summaries describing each teacher’s PCK, which were then subjected to cross-case analysis to identify patterns and themes across teachers. Findings describe how teachers’ backgrounds translated into diverse forms of pPCK that informed the pedagogical moves and decisions teachers made as they implemented the curriculum (ePCK). Regardless of the previous subject taught (math, science, or ELA), teachers routinely drew upon their pPCK in other subjects as they facilitated the engineering design process. Teachers with previous experience teaching math or science tended to be more likely than others to foreground the integration of math or science within the curriculum. Comparison of ePCK observed as teachers implemented the curriculum revealed that, in spite of having a more fully developed pPCK in teaching engineering, the veteran engineering teacher did not exhibit more sophisticated ePCK than novice engineering teachers. In addition to contributing to the field’s understanding of engineering teachers’ PCK, these findings hold implications for the recruitment, retention, and professional development of engineering teachers. 
    more » « less