This paper draws on critical perspectives and a specific design case of learning in making with physical computing cards to argue that unblackboxing as a design goal must go beyond technical or computational aspects of computational making. Taking a justice-oriented stance on computing education, we review earlier perspectives on unblackboxing in computing education and their limitations to support equitable learning for young people. As a provocation and practical guide for designers and educators, we propose the idea of deblackboxing, and outline a set of prompts, organized into four areas, or layers – disciplinary knowledge and practice, externalities, histories, and possible futures. Tools and materials designed through the lens of deblackboxing could provide new possibilities for interaction, production, and pedagogy in makerspaces. We demonstrate how these might be applied in the design of a set of creative physical computing materials used with youth in a weeklong summer workshop.
more »
« less
Making Computing Visible & Tangible: A paper-based computing toolkit for codesigning inclusive computing education activities
MCVT (Making Computing Visible and Tangible) Cards are a toolkit of paper-based computing cards intended for use in the codesign of inclusive computing education. Working with groups of teachers and students over multiple design sessions, we share our toolkit, design drivers and material considerations; and use cases drawn from a week-long codesign workshop where seven teachers made and adapted cards for their future classroom facilitation. Our findings suggest that teachers valued the MCVT toolkit as a resource for their own learning and perceived the cards to be useful for supporting new computational practices, specifically for learning through making and connecting to examples of everyday computing. Critically reviewed by teachers during codesign workshops, the toolkit however posed some implementation challenges and constraints for learning through making and troubleshooting circuitry. From teacher surveys, interviews, workshop video recordings, and teacher-constructed projects, we show how teachers codesigned new design prototypes and pedagogical activities while also adapting and extending paper-based computing materials so their students could take advantage of the unique technical and expressive affordances of MCVT Cards. Our design research contributes a new perspective on using interactive paper computing cards as a medium for instructional materials development to support more inclusive computing education.
more »
« less
- Award ID(s):
- 2030880
- PAR ID:
- 10535440
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- International Journal of Child-Computer Interaction
- Volume:
- 38
- Issue:
- C
- ISSN:
- 2212-8689
- Page Range / eLocation ID:
- 100602
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Indigenous communities remain among the most underrepresented groups in computing and STEM fields, facing systemic barriers to equitable participation in computer science (CS) education. This study examines how Indigenous-serving teachers, through a sustained professional development (PD) program, design and implement culturally responsive computing (CRC) curricula in Indigenous-serving schools. Guided by the research question: How does sustained CS professional development inform the design of culturally responsive computing curricula by experienced CS teachers in Indigenous-serving schools? We employed a natural language processing (NLP) data fusion approach that integrates text mining and qualitative thematic analysis to investigate how teachers incorporate Indigenous knowledge into computing instruction. Our findings reveal three emergent themes in teacher learning and lesson design: Creating opportunities to access culture through computation, Leveraging Research and Critical Thinking Skills to Critically Engage Students with Computing, and Reflection, refinement, and professional growth through ongoing collaboration. These themes underscore the impact of CRC on bridging cultural traditions with computing, fostering engagement, and enhancing Indigenous students’ sense of belonging in CS. By supporting teachers in developing culturally relevant lessons that integrate storytelling, traditional arts, and computational thinking, this research contributes to the broader discourse on inclusive CS education. This study informs future efforts to expand Indigenous student participation in computing by highlighting the role of culturally sustaining pedagogy in professional development and curriculum design.more » « less
-
This paper describes the beginning of a design-based research project for integrating computing activities in preservice teacher programs throughout a middle and secondary education department. Computing integration activities use computing tools, like programming, to support learning in non-computing disciplines. The paper begins with the motivation for integrating computing that encouraged widespread buy-in, design goals, and design parameters. The primary motivating factor for this work was preparing teachers to use technology to support learning in their classrooms. Involving computing education faculty in the preparation enabled the activities to include computer science and spread computational literacy. The paper also describes the process and year-long timeline for designing and implementing the integrations, followed by the details of the computing integrated activities. Last, the paper describes preservice teachers’ reactions to computing integration, focusing on before-and-after perceptions and knowledge of computing. Preservice teachers perceptions and knowledge of computing evolved similarly to teachers who engage in different approaches to learning about integrated computing, such as in elective or educational technology courses, suggesting that this approach is effective for engaging all teachers in integrating computing. In particular, the common feature that ignited teachers’ excitement about integrating computing was offering new opportunities to improve student learning and providing engaging activities within their non-computing discipline.more » « less
-
This fundamental research in pre-college education engineering study investigates the ways in which elementary school students and their teacher balance the tradeoffs in engineering design. STEM education reforms promote the engagement of K-12 students in the epistemic practices of disciplinary experts to teach content.1,2,3 This emphasis on practices is a paradigm shift that requires both extensive professional development and research to learn about the ways in which students and teacher learn about and participate in these practices. Balancing tradeoffs is an important practice in engineering but most often in classroom curricula it is embedded in the concept of iteration1,4; however, improving a design is not always the same as balancing trade-offs.1 Optimizing a multivariate problem requires students to engage in a number of engineering practices, like considering multiple solution, making tradeoffs between criteria and constraints, applying math and science knowledge to problem solving, constructing models, making evidence-based decisions, and assessing the implications of solutions5. The ways in which teachers and students collectively balance these tradeoffs in a design has been understudied1. Our primary research questions are, “How do teachers and students make decisions about making tradeoffs between criteria and constraints” and “How do experiences in teacher workshops affect the ways they implement engineering projects in their classes.” We take an ethnographic perspective to investigate these phenomena, and collected video data, field notes, student journals, and semi-structured interviews of eight elementary teachers in a workshop and similar data from two of the workshop teachers’ classes as they implemented the curriculum they learned in the workshop. Our analyses focus on the disciplinary practices teachers and students use to make decisions for balancing tradeoffs, how they are supported (or impeded) by teachers, and how they justify these decisions. Similarly, we compared two of the teachers wearing their “student hat” in the workshop as well as their “teacher hat” in the classroom5. Our analyses suggest three significant findings. First, teachers and students tended to focus on one criterion (e.g. cost, performance) and had few discussions about trying to minimize cost and maximize performance. Second, curriculum design significantly impacts the choices students make. Using two examples, we will show the impact of weighting criteria differently on the design strategies teachers and students make. Last, we noted most of the feedback given was related to managing classroom activity rather than supporting students’ designs. Implications of this study are relevant to both engineering educators and engineering curriculum developers.more » « less
-
Amongst efforts to realize computer science (CS) for all, recent critiques of racially biased technologies have emerged (e.g., facial recognition software), revealing a need to critically examine the interaction between computing solutions and societal factors. Yet within efforts to introduce K-12 students to such topics, studies examining teachers' learning of critical computing are rare. To understand how teachers learn to integrate societal issues within computing education, we analyzed video of a teacher professional development (PD) session with experienced computing teachers. Highlighting three particular episodes of conversation during PD, our analysis revealed how personal and classroom experiences—from making a sensor-based project to drawing on family and teaching experiences—tethered teachers’ weaving of societal and technical aspects of CS and enabled reflections on their learning and pedagogy. We discuss the need for future PD efforts to build on teachers’ experiences, draw in diverse teacher voices, and develop politicized trust among teachers.more » « less
An official website of the United States government

