Abstract Converting measurements of ice-sheet surface elevation change to mass change requires measurements of accumulation and knowledge of the evolution of the density profile in the firn. Most firn-densification models are tuned using measured depth–density profiles, a method which is based on an assumption that the density profile in the firn is invariant through time. Here we present continuous measurements of firn-compaction rates in 12 boreholes near the South Pole over a 2 year period. To our knowledge, these are the first continuous measurements of firn compaction on the Antarctic plateau. We use the data to derive a new firn-densification algorithm framed as a constitutive relationship. We also compare our measurements to compaction rates predicted by several existing firn-densification models. Results indicate that an activation energy of 60 kJ mol−1, a value within the range used by current models, best predicts the seasonal cycle in compaction rates on the Antarctic plateau. Our results suggest models can predict firn-compaction rates with at best 7% uncertainty and cumulative firn compaction on a 2 year timescale with at best 8% uncertainty.
more »
« less
This content will become publicly available on July 16, 2025
Characterizing South Pole Firn Structure With Fiber Optic Sensing
Abstract The firn layer covers 98% of Antarctica's ice sheets, protecting underlying glacial ice from the external environment. Accurate measurement of firn properties is essential for assessing cryosphere mass balance and climate change impacts. Characterizing firn structure through core sampling is expensive and logistically challenging. Seismic surveys, which translate seismic velocities into firn densities, offer an efficient alternative. This study employs Distributed Acoustic Sensing technology to transform an existing fiber‐optic cable near the South Pole into a multichannel, low‐maintenance, continuously interrogated seismic array. The data resolve 16 seismic wave propagation modes at frequencies up to 100 Hz that constrain P and S wave velocities as functions of depth. Using co‐located geophones for ambient noise interferometry, we resolve very weak radial anisotropy. Leveraging nearby SPICEcore firn density data, we find prior empirical density‐velocity relationships underestimate firn air content by over 15%. We present a new empirical relationship for the South Pole region.
more »
« less
- Award ID(s):
- 2022920
- PAR ID:
- 10535453
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Subglacial lakes require a thawed bed either now or in the past; thus, their presence and stability have implications for current and past basal conditions, ice dynamics, and climate. Here, we present the most extensive geophysical exploration to date of a subglacial lake near the geographic South Pole, including radar‐imaged stratigraphy, surface velocities, and englacial vertical velocities. We use a 1.5‐dimensional temperature model, optimized with our geophysical data set and nearby temperature measurements, to estimate past basal‐melt rates. The ice geometry, reflected bed‐echo power, surface and vertical velocities, and temperature model indicate that the ice‐bed interface is regionally thawed, contradicting prior studies. Together with an earlier active‐source seismic study, which showed a 32‐m deep lake underlain by 150 m of sediment, our results suggest that the lake has been thermodynamically stable through at least the last 120,000 years and possibly much longer, making it a promising prospective site for sediment coring.more » « less
-
Abstract Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typical of Antarctic firn.more » « less
-
Abstract The thermal field within the firn layer on the Greenland Ice Sheet (GrIS) governs meltwater retention processes, firn densification with surface elevation change, and heat transfer from the surface boundary to deep ice. However, there are few observational data to constrain these processes with only sparse in situ temperature time series that do not extend through the full firn depth. Here, we quantify the thermal structure of Western Greenland’s firn column using instrumentation installed in an elevation transect of boreholes extending to 30 and 96 m depths. During the high‐melt summer of 2019, heat gain in the firn layer showed strong elevation dependency, with greater uptake and deeper penetration of heat at lower elevations. The bulk thermal conductivity increased by 15% per 100 m elevation loss due to higher density related to ice layers. Nevertheless, the conductive heat gain remained relatively constant along the transect due to stronger temperature gradients in the near surface firn at higher elevations. The primary driver of heat gain during this high melt summer was latent heat transfer, which increased up to ten‐fold over the transect, growing by 34 MJ m−2per 100 m elevation loss. The deep‐firn temperature gradient beneath the seasonally active layer doubled over a 270‐m elevation drop across the study transect, increasing heat flux from the firn layer into deep ice at lower elevations. Our in situ firn temperature time series offers observational constraints for modeling studies and insights into the future evolution of the percolation zone in a warmer climate.more » « less
-
Abstract. Linear elastic fracture mechanics (LEFM) models have been used to estimate crevasse depths in glaciers and to represent iceberg calving in ice sheet models. However, existing LEFM models assume glacier ice to be homogeneous and utilize the mechanical properties of fully consolidated ice. Using depth-invariant properties is not realistic as the process of compaction from unconsolidated snow to firn to glacial ice is dependent on several environmental factors, typically leading to a lower density and Young's modulus in upper surface strata. New analytical solutions for longitudinal-stress profiles are derived using depth-varying properties based on borehole data from the Ronne Ice Shelf and are used in an LEFM model to determine the maximum penetration depths of an isolated crevasse in grounded glaciers and floating ice shelves. These maximum crevasse depths are compared to those obtained for homogeneous glacial ice, showing the importance of including the effect of the upper unconsolidated firn layers on crevasse propagation. The largest reductions in the penetration depth ratio were observed for shallow grounded glaciers, with variations in Young's modulus being more influential than firn density (maximum differences in crevasse depth of 46 % and 20 %, respectively), whereas firn density changes resulted in an increase in penetration depth for thinner floating ice shelves (95 %–188 % difference in crevasse depth between constant and depth-varying properties). Thus, our study shows that the firn layer can increase the vulnerability of ice shelves to fracture and calving, highlighting the importance of considering depth-dependent firn layer material properties in LEFM models for estimating crevasse penetration depths and predicting rift propagation.more » « less