skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2022920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The firn layer covers 98% of Antarctica's ice sheets, protecting underlying glacial ice from the external environment. Accurate measurement of firn properties is essential for assessing cryosphere mass balance and climate change impacts. Characterizing firn structure through core sampling is expensive and logistically challenging. Seismic surveys, which translate seismic velocities into firn densities, offer an efficient alternative. This study employs Distributed Acoustic Sensing technology to transform an existing fiber‐optic cable near the South Pole into a multichannel, low‐maintenance, continuously interrogated seismic array. The data resolve 16 seismic wave propagation modes at frequencies up to 100 Hz that constrain P and S wave velocities as functions of depth. Using co‐located geophones for ambient noise interferometry, we resolve very weak radial anisotropy. Leveraging nearby SPICEcore firn density data, we find prior empirical density‐velocity relationships underestimate firn air content by over 15%. We present a new empirical relationship for the South Pole region. 
    more » « less
    Free, publicly-accessible full text available July 16, 2025