Abstract Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels. 
                        more » 
                        « less   
                    
                            
                            A dominant‐negative Arabidopsis cation exchanger 1 ( CAX1 ): N‐terminal autoinhibition and membrane topology
                        
                    
    
            SUMMARY Calcium (Ca2+) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca2+transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N‐terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant‐negative CAX1 variant, named ½N‐CAX1, incorporating the autoinhibitory domain and the N‐terminal pseudosymmetrical module, which, when expressed in wild‐type Arabidopsis plants, phenocopied the anoxia tolerance ofcax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild‐type plants expressing ½N‐CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N‐CAX1 with CAX1. Eliminating segments within the N‐terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild‐type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant‐negative phenotype. Our study elucidates the interaction of this ½N‐CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2042513
- PAR ID:
- 10535494
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 119
- Issue:
- 6
- ISSN:
- 0960-7412
- Format(s):
- Medium: X Size: p. 2982-2999
- Size(s):
- p. 2982-2999
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A plant’s oxygen supply can vary from normal (normoxia) to total depletion (anoxia). Tolerance to anoxia is relevant to wetland species, rice (Oryza sativa) cultivation, and submergence tolerance of crops. Decoding and transmitting calcium (Ca) signals may be an important component to anoxia tolerance; however, the contribution of intracellular Ca transporters to this process is poorly understood. Four functional cation/proton exchangers (CAX1–4) in Arabidopsis (Arabidopsis thaliana) help regulate Ca homeostasis around the vacuole. Our results demonstrate that cax1 mutants are more tolerant to both anoxic conditions and submergence. Using phenotypic measurements, RNA-sequencing, and proteomic approaches, we identified cax1-mediated anoxia changes that phenocopy changes present in anoxia-tolerant crops: altered metabolic processes, diminished reactive oxygen species production post anoxia, and altered hormone signaling. Comparing wild-type and cax1 expressing genetically encoded Ca indicators demonstrated altered cytosolic Ca signals in cax1 during reoxygenation. Anoxia-induced Ca signals around the plant vacuole are involved in the control of numerous signaling events related to adaptation to low oxygen stress. This work suggests that cax1 anoxia response pathway could be engineered to circumvent the adverse effects of flooding that impair production agriculture.more » « less
- 
            Abstract Research on elemental distribution in plants is crucial for understanding nutrient uptake, environmental adaptation and optimizing agricultural practices for sustainable food production. Plant trichomes, with their self-contained structures and easy accessibility, offer a robust model system for investigating elemental repartitioning. Transport proteins, such as the four functional cation exchangers (CAXs) in Arabidopsis, are low-affinity, high-capacity transporters primarily located on the vacuole. Mutants in these transporters have been partially characterized, one of the phenotypes of the CAX1 mutant being altered with tolerance to low-oxygen conditions. A simple visual screen demonstrated trichome density and morphology in cax1, and quadruple CAX (cax1-4: qKO) mutants remained unaltered. Here, we used synchrotron X-ray fluorescence (SXRF) to show that trichomes in CAX-deficient lines accumulated high levels of chlorine, potassium, calcium and manganese. Proteomic analysis on isolated Arabidopsis trichomes showed changes in protein abundance in response to changes in element accumulation. The CAX mutants showed an increased abundance of plasma membrane ATPase and vacuolar H-pumping proteins, and proteins associated with water movement and endocytosis, while also showing changes in proteins associated with the regulation of plasmodesmata. These findings advance our understanding of the integration of CAX transport with elemental homeostasis within trichomes and shed light on how plants modulate protein abundance under conditions of altered elemental levels.more » « less
- 
            SUMMARY Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant,aberrantlybranchedtrichome 3–1(abt3‐1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed thatabt3‐1is a new mutant allele ofAuxin resistant 1(AXR1), which encodes the N‐terminal half of ubiquitin‐activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version ofROP2(CA‐ROP2) caused a reduction of trichome branches, resembling that ofabt3‐1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showedAXR1genetically interacted withROP2and mediated ROP2 protein stability. The loss ofAXR1aggravated the trichome defects ofCA‐ROP2and induced the accumulation of steady‐state ROP2. Consistently, elevatedAXR1expression levels suppressedROP2expression and partially rescued trichome branching defects inCA‐ROP2plants. Together, our results presented a new mutant allele ofAXR1, uncovered the effects ofAXR1andROP2during trichome development, and revealed a pathway ofROP2‐mediated regulation of plant cell morphogenesis in Arabidopsis.more » « less
- 
            Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. InArabidopsis, a subfamily of “helper” NLRs is required by many “sensor” NLRs. Active NRG1.1 oligomerized, was enriched in plasma membrane puncta, and conferred cytoplasmic calcium ion (Ca2+) influx in plant and human cells. NRG1.1-dependent Ca2+influx and cell death were sensitive to Ca2+channel blockers and were suppressed by mutations affecting oligomerization or plasma membrane enrichment. Ca2+influx and cell death mediated by NRG1.1 and ACTIVATED DISEASE RESISTANCE 1 (ADR1), another helper NLR, required conserved negatively charged N-terminal residues. Whole-cell voltage-clamp recordings demonstrated thatArabidopsishelper NLRs form Ca2+-permeable cation channels to directly regulate cytoplasmic Ca2+levels and consequent cell death. Thus, helper NLRs transduce cell death signals directly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
