skip to main content


Title: Framework for the Use of Extended Reality Modalities in AEC Education
The educational applications of extended reality (XR) modalities, including virtual reality (VR), augmented reality (AR), and mixed reality (MR), have increased significantly over the last ten years. Many educators within the Architecture, Engineering, and Construction (AEC) related degree programs see student benefits that could be derived from bringing these modalities into classrooms, which include but are not limited to: a better understanding of each of the subdisciplines and the coordination necessary between them, visualizing oneself as a professional in AEC, and visualization of difficult concepts to increase engagement, self-efficacy, and learning. These benefits, in turn, help recruitment and retention efforts for these degree programs. However, given the number of technologies available and the fact that they quickly become outdated, there is confusion about the definitions of the different XR modalities and their unique capabilities. This lack of knowledge, combined with limited faculty time and lack of financial resources, can make it overwhelming for educators to choose the right XR modality to accomplish particular educational objectives. There is a lack of guidance in the literature for AEC educators to consider various factors that affect the success of an XR intervention. Grounded in a comprehensive literature review and the educational framework of the Model of Domain Learning, this paper proposes a decision-making framework to help AEC educators select the appropriate technologies, platforms, and devices to use for various educational outcomes (e.g., learning, interest generation, engagement) considering factors such as budget, scalability, space/equipment needs, and the potential benefits and limitations of each XR modality. To this end, a comprehensive review of the literature was performed to decipher various definitions of XR modalities and how they have been previously utilized in AEC Education. The framework was then successfully validated at a summer camp in the School of Building Construction at Georgia Institute of Technology, highlighting the importance of using appropriate XR technologies depending on the educational context.

 
more » « less
Award ID(s):
2202290
NSF-PAR ID:
10358193
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Buildings
Date Published:
Journal Name:
Buildings
Volume:
12
Issue:
12
ISSN:
2075-5309
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article provides a systematic review of research related to Human–Computer Interaction techniques supporting training and learning in various domains including medicine, healthcare, and engineering. The focus is on HCI techniques involving Extended Reality (XR) technology which encompasses Virtual Reality, Augmented Reality, and Mixed Reality. HCI-based research is assuming more importance with the rapid adoption of XR tools and techniques in various training and learning contexts including education. There are many challenges in the adoption of HCI approaches, which results in a need to have a comprehensive and systematic review of such HCI methods in various domains. This article addresses this need by providing a systematic literature review of a cross-s Q1 ection of HCI approaches involving proposed so far. The PRISMA-guided search strategy identified 1156 articles for abstract review. Irrelevant abstracts were discarded. The whole body of each article was reviewed for the remaining articles, and those that were not linked to the scope of our specific issue were also eliminated. Following the application of inclusion/exclusion criteria, 69 publications were chosen for review. This article has been divided into the following sections: Introduction; Research methodology; Literature review; Threats of validity; Future research and Conclusion. Detailed classifications (pertaining to HCI criteria and concepts, such as affordance; training, and learning techniques) have also been included based on different parameters based on the analysis of research techniques adopted by various investigators. The article concludes with a discussion of the key challenges for this HCI area along with future research directions. A review of the research outcomes from these publications underscores the potential for greater success when such HCI-based approaches are adopted during such 3D-based training interactions. Such a higher degree of success may be due to the emphasis on the design of userfriendly (and user-centric) training environments, interactions, and processes that positively impact the cognitive abilities of users and their respective learning/training experiences. We discovered data validating XR-HCI as an ascending method that brings a new paradigm by enhancing skills and safety while reducing costs and learning time through replies to three exploratory study questions. We believe that the findings of this study will aid academics in developing new research avenues that will assist XR-HCI applications to mature and become more widely adopted. 
    more » « less
  2. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the instrument began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 52 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the instrument consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. This instrument will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  3. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 79 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the STEM-OP consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. The STEM-OP will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less
  4. Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate to the Cold War era; EC 2000 and its call for greater emphasis on professional skill sets amidst concerns about US manufacturing productivity and national competitiveness; the development of outcomes assessment and its implementation; and the successive negotiations about assessment practice and the training of both of program evaluators and assessment coordinators for the degree programs undergoing evaluation. It was these negotiations and the evolving practice of assessment that resulted in the latest set of changes in ABET engineering accreditation criteria (“1-7” versus “a-k”). To provide an insight into the origins of EC 2000, the “Gang of Six,” consisting of a group of individuals loyal to ABET who used the pressure exerted by external organizations, along with a shared rhetoric of national competitiveness to forge a common vision organized around the expanded emphasis on professional skill sets. It was also significant that the Gang of Six was aware of the fact that the regional accreditation agencies were already contemplating a shift towards outcomes assessment; several also had a background in industrial engineering. However, this resulted in an assessment protocol for EC 2000 that remained ambiguous about whether the stated learning outcomes (Criterion 3) was something faculty had to demonstrate for all of their students, or whether EC 2000’s main emphasis was continuous improvement. When it proved difficult to demonstrate learning outcomes on the part of all students, ABET itself began to place greater emphasis on total quality management and continuous process improvement (TQM/CPI). This gave institutions an opening to begin using increasingly limited and proximate measures for the “a-k” student outcomes as evidence of effort and improvement. In what social scientific terms would be described as “tactical” resistance to perceived oppressive structures, this enabled ABET coordinators and the faculty in charge of degree programs, many of whom had their own internal improvement processes, to begin referring to the a-k criteria as “difficult to achieve” and “ambiguous,” which they sometimes were. Inconsistencies in evaluation outcomes enabled those most discontented with the a-k student outcomes to use ABET’s own organizational processes to drive the latest revisions to EAC accreditation criteria, although the organization’s own process for member and stakeholder input ultimately restored much of the professional skill sets found in the original EC 2000 criteria. Other refinements were also made to the standard, including a new emphasis on diversity. This said, many within our interview population believe that EC 2000 had already achieved much of the changes it set out to achieve, especially with regards to broader professional skills such as communication, teamwork, and design. Regular faculty review of curricula is now also a more routine part of the engineering education landscape. While programs vary in their engagement with ABET, there are many who are skeptical about whether the new criteria will produce further improvements to their programs, with many arguing that their own internal processes are now the primary drivers for change. 
    more » « less
  5. Annotation in 3D user interfaces such as Augmented Reality (AR) and Virtual Reality (VR) is a challenging and promising area; however, there are not currently surveys reviewing these contributions. In order to provide a survey of annotations for Extended Reality (XR) environments, we conducted a structured literature review of papers that used annotation in their AR/VR systems from the period between 2001 and 2021. Our literature review process consists of several filtering steps which resulted in 103 XR publications with a focus on annotation. We classified these papers based on the display technologies, input devices, annotation types, target object under annotation, collaboration type, modalities, and collaborative technologies. A survey of annotation in XR is an invaluable resource for researchers and newcomers. Finally, we provide a database of the collected information for each reviewed paper. This information includes applications, the display technologies and its annotator, input devices, modalities, annotation types, interaction techniques, collaboration types, and tasks for each paper. This database provides a rapid access to collected data and gives users the ability to search or filter the required information. This survey provides a starting point for anyone interested in researching annotation in XR environments. 
    more » « less