skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Receptor cavity-based screening reveals potential allosteric modulators of gonadotropin receptors in carp ( Cyprinus carpio )
Abstract The gonadotropins follicle stimulating hormone (FSH) and luteinizing hormone (LH) are key regulators of sexual development and the reproductive cycle in vertebrates. Unlike most G protein-coupled receptors (GPCR), the FSHR and LHR have large extracellular domains containing multiple leucine-rich repeats, which leads to an elaborate mechanism of receptor activation via orthosteric sites that is difficult to manipulate synthetically. To bypass the orthosteric mechanism, in this study using carp as a model organism we identified allosteric sites capable of receptor activation on the transmembrane domain, which are spatially separated from the orthosteric sites. We have further generated pharmacophore hypothesis based on the structural motifs and exposed residues of these cavities. Using available online small compound libraries consisting of >70000 small molecules, we have thereon used receptor cavity-based hypothesis and other screening stages to identify potential modulators of the allosteric binding site on the carp FSHR and LHRin-silico. We then examined byin vitrotransactivation assay the effect of four candidate compounds on FSHR and LHR, as compared to the activity of native ligands. Our results reveal both specific and dual effective allosteric modulators for FSHR and LHR, demonstrating the potential of our approach for efficient pharmacophore-based screening.  more » « less
Award ID(s):
1947541
PAR ID:
10535582
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT G‐protein‐coupled receptors (GPCRs) constitute one of the most prominent families of integral membrane receptor proteins that mediate most transmembrane signaling processes. Malfunction of these signal transduction processes is one of the underlying causes of many human pathologies (Parkinson's, Huntington's, heart diseases, etc), provoking that GPCRs are the largest family of druggable proteins. However, these receptors have been targeted traditionally by orthosteric ligands, which usually causes side effects due to the simultaneous targeting of homologous receptor subtypes. Allosteric modulation offers a promising alternative approach to circumvent this problematic and, thus, comprehending its details is a most important task. Here we use the Cannabinoid type‐1 receptor (CB1R) in trying to shed light on this issue, focusing on positive allosteric modulation. This is done by using the protein‐dipole Langevin‐dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S‐2000) along with our coarse‐grained (CG) model of membrane proteins to evaluate the dissociation constants (KBs) and cooperativity factors (αs) for a diverse series of CB1R positive allosteric modulators belonging to the 2‐phenylindole structural class, considering CP55940 as an agonist. The agreement with the experimental data evinces that significantly populated allosteric modulator:CB1R and allosteric modulator:CP55940:CB1R complexes have been identified and characterized successfully. Analyzing them, it has been determined that CB1R positive allosteric modulation lies in an outwards displacement of transmembrane α helix (TM) 4 extracellular end and in the regulation of the range of motion of a compound TM7 movement for binary and ternary complexes, respectively. In this respect, we achieved a better comprehension of the molecular architecture of CB1R positive allosteric site, identifying Lys1923.28and Gly1943.30as key residues regarding electrostatic interactions inside this cavity, and to rationalize (at both structural and molecular level) the exhibited stereoselectivity in relation to positive allosteric modulation activity by considered CB1R allosteric modulators. Additionally, putative/postulated allosteric binding sites have been screened successfully, identifying the real CB1R positive allosteric site, and most structure–activity relationship (SAR) studies of CB1R 2‐phenylindole allosteric modulators have been rationalized. All these findings point out towards the predictive value of the methodology used in the current work, which can be applied to other biophysical systems of interest. The results presented in this study contribute significantly to understand GPCRs allosteric modulation and, hopefully, will encourage a more thorough exploration of the topic. 
    more » « less
  2. Although the 3D structures of active and inactive cannabinoid receptors type 2 (CB2) are available, neither the X-ray crystal nor the cryo-EM structure of CB2-orthosteric ligand-modulator has been resolved, prohibiting the drug discovery and development of CB2 allosteric modulators (AMs). In the present work, we mainly focused on investigating the potential allosteric binding site(s) of CB2. We applied different algorithms or tools to predict the potential allosteric binding sites of CB2 with the existing agonists. Seven potential allosteric sites can be observed for either CB2-CP55940 or CB2-WIN 55,212-2 complex, among which sites B, C, G and K are supported by the reported 3D structures of Class A GPCRs coupled with AMs. Applying our novel algorithm toolset-MCCS, we docked three known AMs of CB2 including Ec2la (C-2), trans-β-caryophyllene (TBC) and cannabidiol (CBD) to each site for further comparisons and quantified the potential binding residues in each allosteric binding site. Sequentially, we selected the most promising binding pose of C-2 in five allosteric sites to conduct the molecular dynamics (MD) simulations. Based on the results of docking studies and MD simulations, we suggest that site H is the most promising allosteric binding site. We plan to conduct bio-assay validations in the future. 
    more » « less
  3. While the COVID-19 pandemic continues to worsen, effective medicines that target the life cycle of SARS-CoV-2 are still under development. As more highly infective and dangerous variants of the coronavirus emerge, the protective power of vaccines will decrease or vanish. Thus, the development of drugs, which are free of drug resistance is direly needed. The aim of this study is to identify allosteric binding modulators from a large compound library to inhibit the binding between the Spike protein of the SARS-CoV-2 virus and human angiotensin-converting enzyme 2 (hACE2). The binding of the Spike protein to hACE2 is the first step of the infection of host cells by the coronavirus. We first built a compound library containing 77 448 antiviral compounds. Molecular docking was then conducted to preliminarily screen compounds which can potently bind to the Spike protein at two allosteric binding sites. Next, molecular dynamics simulations were performed to accurately calculate the binding affinity between the spike protein and an identified compound from docking screening and to investigate whether the compound can interfere with the binding between the Spike protein and hACE2. We successfully identified two possible drug binding sites on the Spike protein and discovered a series of antiviral compounds which can weaken the interaction between the Spike protein and hACE2 receptor through conformational changes of the key Spike residues at the Spike–hACE2 binding interface induced by the binding of the ligand at the allosteric binding site. We also applied our screening protocol to another compound library which consists of 3407 compounds for which the inhibitory activities of Spike/hACE2 binding were measured. Encouragingly, in vitro data supports that the identified compounds can inhibit the Spike–ACE2 binding. Thus, we developed a promising computational protocol to discover allosteric inhibitors of the binding of the Spike protein of SARS-CoV-2 to the hACE2 receptor, and several promising allosteric modulators were discovered. 
    more » « less
  4. Abstract G‐protein‐coupled receptors (GPCRs) are among the most important receptors in human physiology and pathology. They serve as master regulators of numerous key processes and are involved in as well as cause debilitating diseases. Consequently, GPCRs are among the most attractive targets for drug design and pharmaceutical interventions (>30% of drugs on the market). The glucagon‐like peptide 1 (GLP‐1) hormone receptor GLP1R is closely involved in insulin secretion by pancreatic β‐cells and constitutes a major druggable target for the development of anti‐diabetes and obesity agents. GLP1R structure was recently solved, with ligands, allosteric modulators and as part of a complex with its cognate G protein. However, the translation of this structural data into structure/function understanding remains limited. The current study functionally characterizes GLP1R with special emphasis on ligand and cellular partner binding interactions and presents a free‐energy landscape as well as a functional model of the activation cycle of GLP1R. Our results should facilitate a deeper understanding of the molecular mechanism underlying GLP1R activation, forming a basis for improved development of targeted therapeutics for diabetes and related disorders. 
    more » « less
  5. We review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Despite the established presence of small amounts of structural water in these receptors, the influence of bulk water on their function remains unknown. Investigations of osmotic stress effects on the GPCR archetype rhodopsin have provided unique data about the role of water in receptor activation. It was discovered that osmolytes shift the rhodopsin equilibrium after photoactivation, either to the active or inactive conformations depending on their molar mass. Experimentally at least 80 water molecules have been found to enter rhodopsin in the transition to the active state. We propose that this influx of water is a necessary condition for receptor activation. If the water movement is blocked, e.g., by large osmolytes or by dehydration, then the receptor does not undergo its functional transition. The results suggest a new model whereby rhodopsin becomes swollen and partially unfolded in the activation mechanism. Water thus acts as a powerful allosteric modulator of functioning for rhodopsin-like receptors. Keywords: G-protein-coupled receptors, membranes, optical spectroscopy, rhodopsin, signal transduction. 
    more » « less