skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Data Exploration, Preparation, and Pilot Studies for Building a Knowledge Model of the Cayo Santiago Rhesus Monkeys
Abstract--The Cayo Santiago rhesus, established and maintained for 85 years, has evolved into a valuable resource for researchers across various disciplines. This research paper outlines an ongoing NSF project aimed at developing a comprehensive database and user-friendly software application, CSViewer, to uncover hidden knowledge. Using a big data approach, the paper focuses on key events in the colony's population dynamics, emphasizing gender-specific analyses. It also explores data exploration and preparation processes, along with the application of the genealogy model in inbreeding analysis and genetic tracing. Future efforts, including the expansion of CSViewer's functions, are also addressed.  more » « less
Award ID(s):
1926402
PAR ID:
10535616
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
2023 International Conference on Computational Science and Computational Intelligence (CSCI), Dec 13-15
Date Published:
Subject(s) / Keyword(s):
Keywords—Cayo Santiago Rhesus Monkey Colony, CSViewer for analysts, information integration, big data approach, female vs male reproduction patterns
Format(s):
Medium: X
Location:
Las Vegas, NV
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing market of the mobile application is overtaking the web application. Mobile application development environment is open source, which attracts new inexperienced developers to gain hands on experience with application development. However, the security of data and vulnerable coding practice is an issue. Among all mobile Operating systems such as, iOS (by Apple), Android (by Google) and Blackberry (RIM), Android dominates the market. The majority of malicious mobile attacks take advantage of vulnerabilities in mobile applications, such as sensitive data leakage via the inadvertent or side channel, unsecured sensitive data storage, data transition and many others. Most of these vulnerabilities can be detected during mobile application analysis phase. In this paper, we explore vulnerability detection for static and dynamic analysis tools. We also suggest limitations of the tools and future directions such as the development of new plugins. 
    more » « less
  2. The Tapis Streams API is a production grade quality service that provides REST APIs for storing, processing and analyzing real-time streaming data. This paper focuses on improvements made to Tapis 1.0 Streams API for making it up-to-date and easily accessible. The newer version, Tapis 1.2 Streams API adopts the latest version of InfluxDB, InfluxDB 2.X, which has built-in security features and supports next generation data analytics and processing with a data processing language Flux. This paper also discusses the measures implemented in the Tapis 1.2 Streams API to mitigate potential security risks involved in unauthorized data stream access by users who do not own it. Additionally, new data Channel Actions supporting 3rd Party notification and web-hooks has been released. Lastly a tool, Tapis UI, which is a self contained server less application to access Tapis Services via rest calls is discussed in the paper. Tapis UI is a lightweight browser only client application which allows interactive access to Streams resources and real-time streaming data. 
    more » « less
  3. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. Emerging technologies drive the ongoing transformation of Intelligent Transportation Systems (ITS). This transformation has given rise to cybersecurity concerns, among which data poisoning attack emerges as a new threat as ITS increasingly relies on data. In data poisoning attacks, attackers inject malicious perturbations into datasets, potentially leading to inaccurate results in offline learning and real-time decision-making processes. This paper concentrates on data poisoning attack models against ITS. We identify the main ITS data sources vulnerable to poisoning attacks and application scenarios that enable staging such attacks. A general framework is developed following rigorous study process from cybersecurity but also considering specific ITS application needs. Data poisoning attacks against ITS are reviewed and categorized following the framework. We then discuss the current limitations of these attack models and the future research directions. Our work can serve as a guideline to better understand the threat of data poisoning attacks against ITS applications, while also giving a perspective on the future development of trustworthy ITS. 
    more » « less
  4. null (Ed.)
    The volume of data moving through a network increases with new scientific experiments and simulations. Network bandwidth requirements also increase proportionally to deliver data within a certain time frame. We observe that a significant portion of the popular dataset is transferred multiple times to different users as well as to the same user for various reasons. In-network data caching for the shared data has shown to reduce the redundant data transfers and consequently save network traffic volume. In addition, overall application performance is expected to improve with in-network caching because access to the locally cached data results in lower latency. This paper shows how much data was shared over the study period, how much network traffic volume was consequently saved, and how much the temporary in-network caching increased the scientific application performance. It also analyzes data access patterns in applications and the impacts of caching nodes on the regional data repository. From the results, we observed that the network bandwidth demand was reduced by nearly a factor of 3 over the study period. 
    more » « less
  5. Abstract The inherent qualitative nature of textual data poses significant challenges for direct integration into statistical models. This paper presents a two-stage process for analyzing longitudinal textual data, offering a solution to this inherent challenge. The proposed model comprises (1) initial data preprocessing and sentiment extraction, followed by (2) applying a growth curve model to analyze the extracted sentiments directly. The paper also explores four distinct approaches for extracting sentiment scores in the dialogue, providing versatility to the proposed framework. The practical application of the proposed model is demonstrated through the analysis of an empirical longitudinal textual dataset. This framework offers a valuable contribution to the field by addressing the challenges associated with modeling qualitative textual data, providing a robust methodology for extracting and analyzing sentiments longitudinally. 
    more » « less