skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Luminosity Phase Space of Galactic and Extragalactic X-Ray Transients Out to Intermediate Redshifts
Abstract We present a detailed compilation and analysis of the X-ray phase space of low- to intermediate-redshift (0 ≤z≤ 1) transients that consolidates observed light curves (and theory where necessary) for a large variety of classes of transient/variable phenomena in the 0.3–10 keV energy band. We include gamma-ray burst afterglows, supernovae, supernova shock breakouts and shocks interacting with the environment, tidal disruption events and active galactic nuclei, fast blue optical transients, cataclysmic variables, magnetar flares/outbursts and fast radio bursts, cool stellar flares, X-ray binary outbursts, and ultraluminous X-ray sources. Our overarching goal is to offer a comprehensive resource for the examination of these ephemeral events, extending the X-ray duration–luminosity phase space (DLPS) to show luminosity evolution. We use existing observations (both targeted and serendipitous) to characterize the behavior of various transient/variable populations. Contextualizing transient signals in the larger DLPS serves two primary purposes: to identify areas of interest (i.e., regions in the parameter space where one would expect detections, but in which observations have historically been lacking), and to provide initial qualitative guidance in classifying newly discovered transient signals. We find that while the most luminous (largely extragalactic) and least luminous (largely Galactic) part of the phase space is well populated att> 0.1 days, intermediate-luminosity phenomena (LX= 1034–1042erg s−1) represent a gap in the phase space. We thus identifyLX= 1034–1042erg s−1andt= 10−4to 0.1 days as a key discovery phase space in transient X-ray astronomy.  more » « less
Award ID(s):
2224255 2221789
PAR ID:
10535658
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
959
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the first deep X-ray observations of luminous fast blue optical transient (LFBOT) AT 2018cow at ∼3.7 yr since discovery, together with the reanalysis of the observation atδt∼ 220 days. X-ray emission is significantly detected at a location consistent with AT 2018cow. The very soft X-ray spectrum and sustained luminosity are distinct from the spectral and temporal behavior of the LFBOT in the first ∼100 days and would possibly signal the emergence of a new emission component, although a robust association with AT 2018cow can only be claimed atδt∼ 220 days, while atδt∼ 1350 days contamination of the host galaxy cannot be excluded. We interpret these findings in the context of the late-time panchromatic emission from AT 2018cow, which includes the detection of persistent, slowly fading UV emission withνLν≈ 1039erg s−1. Similar to previous works (and in analogy with arguments for ultraluminous X-ray sources), these late-time observations are consistent with thin disks around intermediate-mass black holes (withM≈ 103–104M) accreting at sub-Eddington rates. However, differently from previous studies, we find that smaller-mass black holes withM≈ 10–100Maccreting at ≳the Eddington rate cannot be ruled out and provide a natural explanation for the inferred compact size (Rout≈ 40R) of the accretion disk years after the optical flare. Most importantly, irrespective of the accretor mass, our study lends support to the hypothesis that LFBOTs are accretion-powered phenomena and that, specifically, LFBOTs constitute electromagnetic manifestations of super-Eddington accreting systems that evolve to ≲Eddington over a ≈100-day timescale. 
    more » « less
  2. Abstract We present the discovery of a luminous X-ray active galactic nucleus (AGN) in the dwarf galaxy merger RGG 66. The black hole is predicted to have a mass ofMBH∼ 105.4Mand to be radiating close to its Eddington limit (Lbol/LEdd∼ 0.75). The AGN in RGG 66 is notable both for its presence in a late-stage dwarf–dwarf merger and for its luminosity ofL2–10 keV= 1042.2erg s−1, which is among the most powerful AGNs known in nearby dwarf galaxies. The X-ray spectrum has a best-fit photon index of Γ = 2.4 and an intrinsic absorption ofNH∼ 1021cm−2. These results come from a follow-up Chandra X-ray Observatory study of four irregular/disturbed dwarf galaxies with evidence for hosting AGNs based on optical spectroscopy. The remaining three dwarf galaxies do not have detectable X-ray sources with upper limits ofL2–10 keV≲ 1040erg s−1. Taken at face value, our results on RGG 66 suggest that mergers may trigger the most luminous of AGNs in the dwarf galaxy regime, just as they are suspected to do in more massive galaxy mergers. 
    more » « less
  3. Abstract “Quasiperiodic eruptions” (QPE) are recurrent nuclear transients with periods of several hours to almost a day, which thus far have been detected exclusively in the X-ray band. We have shown that many of the key properties of QPE flares (period, luminosity, duration, emission temperature, alternating long-short recurrence time behavior, and source rates) are naturally reproduced by a scenario involving twice-per-orbit collisions between a solar-type star on a mildly eccentric orbit, likely brought into the nucleus as an extreme mass-ratio inspiral (EMRI), and the gaseous accretion disk of a supermassive black hole (SMBH). The flare is generated by the hot shocked debris expanding outwards from either side of the disk midplane, akin to dual miniature supernovae. Here, we consider the conditions necessary for disk–star collisions to generate lower-temperature flares that peak in the ultraviolet (UV) instead of the X-ray band. We identify a region of parameter space at low SMBH massM∼ 105.5Mand QPE periodsP≳ 10 hr for which the predicted flares are sufficiently luminousLUV∼ 1041erg s−1to outshine the quiescent disk emission at these wavelengths. The prospects to discover such “UV QPEs” with future satellite missions such as ULTRASAT and Ultraviolet Explorer depend on the prevalence of very low-mass SMBHs and the occurrence rate of stellar EMRIs onto them. For gaseous disks produced by the tidal disruption of stars, we predict that X-ray QPEs will eventually shut off, only to later reappear as UV QPEs as the accretion rate continues to drop. 
    more » « less
  4. Abstract We present a systematic analysis of the X-ray emission of a sample of 17 optically selected, X-ray-detected tidal disruption events (TDEs) discovered between 2014 and 2021. The X-ray light curves show a diverse range of temporal behaviors, with most sources not following the expected power-law decline. The X-ray spectra are mostly extremely soft and consistent with thermal emission from the innermost region of an accretion disk, which cools as the accretion rate decreases. Three sources show formation of a hard X-ray corona at late times. The spectral energy distribution shape, probed by the ratio (LBB/LX) between the UV/optical and X-ray, shows a wide range ofLBB/LX∈ (0.5, 3000) at early times and converges to disklike values ofLBB/LX∈ (0.5, 10) at late times. We estimate the fraction of optically discovered TDEs withLX≥ 1042erg s−1to be at least 40% and show that X-ray loudness is independent of black hole mass. We argue that distinct disk formation timescales are unlikely to be able to explain the diverse range of X-ray evolution. We combine our sample with X-ray-discovered ones to construct an X-ray luminosity function, best fit by a broken power law, with a break atLX≈ 1044erg s−1. We show that there is no dichotomy between optically and X-ray-selected TDEs; instead, there is a continuum of early-timeLBB/LX, at least as wide asLBB/LX∈ (0.1, 3000), with optical/X-ray surveys selecting preferentially, but not exclusively, from the higher/lower end of the distribution. Our findings are consistent with unification models for the overall TDE population. 
    more » « less
  5. Abstract We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108Mand an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs. 
    more » « less