The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset will dramatically alter our understanding of the Universe, from the origins of the Solar System to the nature of dark matter and dark energy. Much of this research will depend on the existence of robust, tested, and scalable algorithms, software, and services. Identifying and developing such tools ahead of time has the potential to significantly accelerate the delivery of early science from LSST. Developing these collaboratively, and making them broadly available, can enable more inclusive and equitable collaboration on LSST science.iv To facilitate such opportunities, a community workshop entitled “From Data to Software to Science with the Rubin Observatory LSST” was organized by the LSST Interdisciplinary Network for Collaboration and Computing (LINCC) and partners, and held at the Flatiron Institute in New York, March 28-30th 2022. The workshop included over 50 in-person attendees invited from over 300 applications. It identified seven key software areas of need: (i) scalable cross-matching and distributed joining of catalogs, (ii) robust photometric redshift determination, (iii) software for determination of selection functions, (iv) frameworks for scalable time-series analyses, (v) services for image access and reprocessing at scale, (vi) object image access (cutouts) and analysis at scale, and (vii) scalable job execution systems. This white paper summarizes the discussions of this workshop. It considers the motivating science use cases, identified cross-cutting algorithms, software, and services, their high-level technical specifications, and the principles of inclusive collaborations needed to develop them. We provide it as a useful roadmap of needs, as well as to spur action and collaboration between groups and individuals looking to develop reusable software for early LSST science. 
                        more » 
                        « less   
                    
                            
                            Rubin Observatory LSST Transients and Variable Stars Roadmap
                        
                    
    
            Abstract The Vera C. Rubin Legacy Survey of Space and Time (LSST) holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey’s first light. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10535661
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- PASP
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 135
- Issue:
- 1052
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 105002
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system’s small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce ±5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics.more » « less
- 
            Abstract We examine the simple model put forth in a recent note by Loeb regarding the brightness of space debris in the size range of 1–10 cm and their impact on the Rubin Observatory Legacy Survey of Space and Time (LSST) transient object searches. Their main conclusion was that “image contamination by untracked space debris might pose a bigger challenge [than large commercial satellite constellations in Low-Earth orbit].” Following corrections and improvements to this model, we calculate the apparent brightness of tumbling low-Earth orbit (LEO) debris of various sizes, and we briefly discuss the likely impact and potential mitigations of glints from space debris in LSST. We find the majority of the difference in predicted signal-to-noise ratio (S/N), about a factor of 6, arises from the defocus of LEO objects due to the large Simonyi Survey Telescope primary mirror and finite range of the debris. The largest change from the Loeb estimates is that 1–10 cm debris in LEO pose no threat to LSST transient object alert generation because their S/N for detection will be much lower than estimated by Loeb due to defocus. We find that only tumbling LEO debris larger than 10 cm or with significantly greater reflectivity, which give 1 ms glints, might be detected with high confidence (S/N > 5). We estimate that only one in five LSST exposures low on the sky during twilight might be affected. More slowly tumbling objects of larger size can give flares in brightness that are easily detected; however, these will not be cataloged by the LSST Science Pipelines because of the resulting long streak.more » « less
- 
            Abstract Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory (Rubin) will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we developed the Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC), a competition that aimed to catalyze the development of robust classifiers under LSST-like conditions of a nonrepresentative training set for a large photometric test set of imbalanced classes. Over 1000 teams participated in PLAsTiCC, which was hosted in the Kaggle data science competition platform between 2018 September 28 and 2018 December 17, ultimately identifying three winners in 2019 February. Participants produced classifiers employing a diverse set of machine-learning techniques including hybrid combinations and ensemble averages of a range of approaches, among them boosted decision trees, neural networks, and multilayer perceptrons. The strong performance of the top three classifiers on Type Ia supernovae and kilonovae represent a major improvement over the current state of the art within astronomy. This paper summarizes the most promising methods and evaluates their results in detail, highlighting future directions both for classifier development and simulation needs for a next-generation PLAsTiCC data set.more » « less
- 
            Abstract We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.)more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    