Recent studies exploring the abilities of transformer-based protein language models have highlighted their performance on the task of remote homology detection, but have not provided datasets or evaluation procedures geared toward properly measuring performance on this task. With the goal of obtaining more informative and reproducible results, we offer a detailed procedure for constructing datasets and evaluating remote homology detection performance in a way that allows detailed analyses to be performed that shed light on the remote homology detection performance throughout the “twilight zone” of low sequence similarity. Using the proposed procedures, we found that three stateof-the-art protein language models exhibit diminishing performance when the pairwise sequence similarity between the query sequence and other proteins is restricted to below 35% identity.
more »
« less
In the twilight zone of protein sequence homology: do protein language models learn protein structure?
Abstract MotivationProtein language models based on the transformer architecture are increasingly improving performance on protein prediction tasks, including secondary structure, subcellular localization, and more. Despite being trained only on protein sequences, protein language models appear to implicitly learn protein structure. This paper investigates whether sequence representations learned by protein language models encode structural information and to what extent. ResultsWe address this by evaluating protein language models on remote homology prediction, where identifying remote homologs from sequence information alone requires structural knowledge, especially in the “twilight zone” of very low sequence identity. Through rigorous testing at progressively lower sequence identities, we profile the performance of protein language models ranging from millions to billions of parameters in a zero-shot setting. Our findings indicate that while transformer-based protein language models outperform traditional sequence alignment methods, they still struggle in the twilight zone. This suggests that current protein language models have not sufficiently learned protein structure to address remote homology prediction when sequence signals are weak. Availability and implementationWe believe this opens the way for further research both on remote homology prediction and on the broader goal of learning sequence- and structure-rich representations of protein molecules. All code, data, and models are made publicly available.
more »
« less
- PAR ID:
- 10535670
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics Advances
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2635-0041
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent studies exploring the abilities of transformer-based protein language models have highlighted their performance on the task of remote homology detection, but have not provided datasets or evaluation procedures geared toward properly measuring performance on this task. With the goal of obtaining more informative and reproducible results, we offer a detailed procedure for constructing datasets and evaluating remote homology detection performance in a way that allows detailed analyses to be performed that shed light on the remote homology detection performance throughout the “twilight zone” of low sequence similarity. Using the proposed procedures, we found that three stateof-the-art protein language models exhibit diminishing performance when the pairwise sequence similarity between the query sequence and other proteins is restricted to below 35% identity.more » « less
-
Accurate detection of protein sequence homology is essential for understanding evolutionary relationships and predicting protein functions, particularly for detecting remote homology in the “twilight zone” (20-35% sequence similarity), where traditional sequence alignment methods often fail. Recent studies show that embeddings from protein language models (pLM) can improve remote homology detection over traditional methods. Alignment-based approaches, such as those combining pLMs with dynamic programming alignment, further improve performance but often suffer from noise in the resulting similarity matrices. To address this, we evaluate a newly developed embedding-based sequence alignment approach that refines residue-level embedding similarity using K-means clustering and double dynamic programming (DDP). We show that the incorporation of clustering and DDP contributes substantially to the improved performance in detecting remote homology. Experimental results demonstrate that our approach outperforms both traditional and state-of-the-art approaches based on pLMs on several benchmarks. Our study illustrates embedding-based alignment refined with clustering and DDP offers a powerful approach for identifying remote homology, with potential to evolve further as pLMs continue to advance.more » « less
-
Abstract MotivationAs fewer than 1% of proteins have protein function information determined experimentally, computationally predicting the function of proteins is critical for obtaining functional information for most proteins and has been a major challenge in protein bioinformatics. Despite the significant progress made in protein function prediction by the community in the last decade, the general accuracy of protein function prediction is still not high, particularly for rare function terms associated with few proteins in the protein function annotation database such as the UniProt. ResultsWe introduce TransFew, a new transformer model, to learn the representations of both protein sequences and function labels [Gene Ontology (GO) terms] to predict the function of proteins. TransFew leverages a large pre-trained protein language model (ESM2-t48) to learn function-relevant representations of proteins from raw protein sequences and uses a biological natural language model (BioBert) and a graph convolutional neural network-based autoencoder to generate semantic representations of GO terms from their textual definition and hierarchical relationships, which are combined together to predict protein function via the cross-attention. Integrating the protein sequence and label representations not only enhances overall function prediction accuracy, but delivers a robust performance of predicting rare function terms with limited annotations by facilitating annotation transfer between GO terms. Availability and implementationhttps://github.com/BioinfoMachineLearning/TransFew.more » « less
-
Abstract MotivationQuality assessment (QA) of predicted protein tertiary structure models plays an important role in ranking and using them. With the recent development of deep learning end-to-end protein structure prediction techniques for generating highly confident tertiary structures for most proteins, it is important to explore corresponding QA strategies to evaluate and select the structural models predicted by them since these models have better quality and different properties than the models predicted by traditional tertiary structure prediction methods. ResultsWe develop EnQA, a novel graph-based 3D-equivariant neural network method that is equivariant to rotation and translation of 3D objects to estimate the accuracy of protein structural models by leveraging the structural features acquired from the state-of-the-art tertiary structure prediction method—AlphaFold2. We train and test the method on both traditional model datasets (e.g. the datasets of the Critical Assessment of Techniques for Protein Structure Prediction) and a new dataset of high-quality structural models predicted only by AlphaFold2 for the proteins whose experimental structures were released recently. Our approach achieves state-of-the-art performance on protein structural models predicted by both traditional protein structure prediction methods and the latest end-to-end deep learning method—AlphaFold2. It performs even better than the model QA scores provided by AlphaFold2 itself. The results illustrate that the 3D-equivariant graph neural network is a promising approach to the evaluation of protein structural models. Integrating AlphaFold2 features with other complementary sequence and structural features is important for improving protein model QA. Availability and implementationThe source code is available at https://github.com/BioinfoMachineLearning/EnQA. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
