skip to main content


This content will become publicly available on June 1, 2025

Title: Stress-constrained optimization of multiscale structures with parameterized microarchitectures using machine learning
Abstract

A multiscale topology optimization framework for stress-constrained design is presented. Spatially varying microstructures are distributed in the macroscale where their material properties are estimated using a neural network surrogate model for homogenized constitutive relations. Meanwhile, the local stress state of each microstructure is evaluated with another neural network trained to emulate second-order homogenization. This combination of two surrogate models — one for effective properties, one for local stress evaluation — is shown to accurately and efficiently predict relevant stress values in structures with spatially varying microstructures. An augmented lagrangian approach to stress-constrained optimization is then implemented to minimize the volume of multiscale structures subjected to stress constraints in each microstructure. Several examples show that the approach can produce designs with varied microarchitectures that respect local stress constraints. As expected, the distributed microstructures cannot surpass density-based topology optimization designs in canonical volume minimization problems. Despite this, the stress-constrained design of hierarchical structures remains an important component in the development of multiphysics and multifunctional design. This work presents an effective approach to multiscale optimization where a machine learning approach to local analysis has increased the information exchange between micro- and macroscales.

 
more » « less
Award ID(s):
2143422
PAR ID:
10535678
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Structural and Multidisciplinary Optimization
Volume:
67
Issue:
6
ISSN:
1615-147X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The data-driven approach is emerging as a promising method for the topological design of multiscale structures with greater efficiency. However, existing data-driven methods mostly focus on a single class of microstructures without considering multiple classes to accommodate spatially varying desired properties. The key challenge is the lack of an inherent ordering or “distance” measure between different classes of microstructures in meeting a range of properties. To overcome this hurdle, we extend the newly developed latent-variable Gaussian process (LVGP) models to create multi-response LVGP (MR-LVGP) models for the microstructure libraries of metamaterials, taking both qualitative microstructure concepts and quantitative microstructure design variables as mixed-variable inputs. The MR-LVGP model embeds the mixed variables into a continuous design space based on their collective effects on the responses, providing substantial insights into the interplay between different geometrical classes and material parameters of microstructures. With this model, we can easily obtain a continuous and differentiable transition between different microstructure concepts that can render gradient information for multiscale topology optimization. We demonstrate its benefits through multiscale topology optimization with aperiodic microstructures. Design examples reveal that considering multiclass microstructures can lead to improved performance due to the consistent load-transfer paths for micro- and macro-structures. 
    more » « less
  2. Because of increased geometric freedom at a widening range of length scales and access to a growing material space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufacturing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple microstructural materials within an optimized macrostructure geometry, manufactured with continuously graded interfaces. To make the process modular and controllable and to avoid prohibitively expensive surface representations, we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at the convergence of material and structure in optimal design and manufacturing. 
    more » « less
  3. We introduce a denoising diffusion algorithm to discover microstructures with nonlinear fine-tuned properties. Denoising diffusion probabilistic models are generative models that use diffusion-based dynamics to gradually denoise images and generate realistic synthetic samples. By learning the reverse of a Markov diffusion process, we design an artificial intelligence to efficiently manipulate the topology of microstructures to generate a massive number of prototypes that exhibit constitutive responses sufficiently close to designated nonlinear constitutive behaviors. To identify the subset of microcstructures with sufficiently precise fine-tuned properties, a convolutional neural network surrogate is trained to replace high-fidelity finite element simulations to filter out prototypes outside the admissible range. Results of this study indicate that the denoising diffusion process is capable of creating microstructures of fine-tuned nonlinear material properties within the latent space of the training data. More importantly, this denoising diffusion algorithm can be easily extended to incorporate additional topological and geometric modifications by introducing high-dimensional structures embedded in the latent space. Numerical experiments are conducted on the open-source mechanical MNIST data set (Lejeune, 2020). Consequently, this algorithm is not only capable of performing inverse design of nonlinear effective media, but also learns the nonlinear structure–property map to quantitatively understand the multiscale interplay among the geometry, topology, and their effective macroscopic properties. 
    more » « less
  4. Abstract

    The deformation behavior of Ti-6Al-4V titanium alloy is significantly influenced by slip localized within crystallographic slip bands. Experimental observations reveal that intense slip bands in Ti-6Al-4V form at strains well below the macroscopic yield strain and may serially propagate across grain boundaries, resulting in long-range localization that percolates through the microstructure. These connected, localized slip bands serve as potential sites for crack initiation. Although slip localization in Ti-6Al-4V is known to be influenced by various factors, an investigation of optimal microstructures that limit localization remains lacking. In this work, we develop a novel strategy that integrates an explicit slip band crystal plasticity technique, graph networks, and neural network models to identify Ti-6Al-4V microstructures that reduce the propensity for strain localization. Simulations are conducted on a dataset of 3D polycrystals, each represented as a graph to account for grain neighborhood and connectivity. The results are then used to train neural network surrogate models that accurately predict localization-based properties of a polycrystal, given its microstructure. These properties include the ratio of slip accumulated in the band to that in the matrix, fraction of total applied strain accommodated by slip bands, and spatial connectivity of slip bands throughout the microstructure. The initial dataset is enriched by synthetic data generated by the surrogate models, and a grid search optimization is subsequently performed to find optimal microstructures. Describing a 3D polycrystal with only a few features and a combination of graph and neural network models offer robustness compared to the alternative approaches without compromising accuracy. We show that while each material property is optimized through a unique microstructure solution, elongated grain shape emerges as a recurring feature among all optimal microstructures. This finding suggests that designing microstructures with elongated grains could potentially mitigate strain localization without compromising strength.

     
    more » « less
  5. Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance. 
    more » « less