skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regularized Conventions: Equilibrium Computation as a Model of Pragmatic Reasoning
We present a game-theoretic model of pragmatics that we call ReCo (for Regularized Conventions). This model formulates pragmatic communication as a game in which players are rewarded for communicating successfully and penalized for deviating from a shared, “default” semantics. As a result, players assign utterances context-dependent meanings that jointly optimize communicative success and naturalness with respect to speakers’ and listeners’ background knowledge of language. By using established game-theoretic tools to compute equilibrium strategies for this game, we obtain principled pragmatic language generation procedures with formal guarantees of communicative success. Across several datasets capturing real and idealized human judgments about pragmatic implicature, ReCo matches, or slightly improves upon, predictions made by Iterated Best Response and Rational Speech Acts models of language understanding.  more » « less
Award ID(s):
2212310
PAR ID:
10535721
Author(s) / Creator(s):
; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
2944 to 2955
Format(s):
Medium: X
Location:
Mexico City, Mexico
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a new framework for a competitive evolutionary game between monoclonal antibodies and signalling pathways in oesophageal cancer. The framework is based on a novel dynamical model that takes into account the dynamic progression of signalling pathways, resistance mechanisms and monoclonal antibody therapies. This game involves a scenario in which signalling pathways and monoclonal antibodies are the players competing against each other, where monoclonal antibodies use Brentuximab and Pembrolizumab dosages as strategies to counter the evolutionary resistance strategy implemented by the signalling pathways. Their interactions are described by the dynamical model, which serves as the game’s playground. The analysis and computation of two game-theoretic strategies, Stackelberg and Nash equilibria, are conducted within this framework to ascertain the most favourable outcome for the patient. By comparing Stackelberg equilibria with Nash equilibria, numerical experiments show that the Stackelberg equilibria are superior for treating signalling pathways and are critical for the success of monoclonal antibodies in improving oesophageal cancer patient outcomes. 
    more » « less
  2. This paper investigates the game theory of resource-allocation situations where the ‘‘first come, first serve’’ heuristic creates inequitable, asymmetric benefits to the players. Specifically, this problem is formulated as a Generalized Nash Equilibrium Model where the players are arranged sequentially along a directed line graph. The goal of the model is to reduce the asymmetric benefits among the players using a policy instrument. It serves as a more realistic, alternative approach to the line-graph models considered in the cooperative game-theoretic literature. An application-oriented formulation is also developed for water resource systems. The players in this model are utilities who withdraw water and are arranged along a river basin from upstream to downstream. This model is applied to a stylized, three-node model as well as a test bed in the Duck River Basin in Tennessee, USA. Based on the results, a non-cooperative, water-release market can be an acceptable policy instrument according to metrics traditionally used in cooperative game theory. 
    more » « less
  3. Children do not learn language from passively analyzing correlations between language and observations, but from interaction with caregivers or peers. The non-nativist approach claims that the main driver of language learning should be to achieve communicative goals. Imitation, on the other hand, is another natural desire that many argue influences language learning. However, there are still gaps in the research on what roles communicative goals and imitating linguistic input play in language acquisition, due to the difficulty of performing comprehensive experiments with human learners. In this paper, we propose a computational framework using simulated experiments that allows us to compare the roles of the two drivers. Specifically, we simulate a two-way communication game between a speaker, corresponding to a language learner, and a listener, corresponding to a caregiver or teacher. The speaker's communicative goals are modeled as rewards for successful completion of a referential game, and imitation is performed by mimicking feedback from the listener. The listener adaptively chooses to give feedback and makes choices based on the speaker's utterances. With empirical results on naturalistic visual and language data, we find that communicative goals play an important role in driving language learning, whereas imitation accelerates the learning process. We also find that (1) models trained with communicative goals tend to use minimal vocabulary and utterances and overextend them to concepts outside the original word meanings; (2) the strategy with which the listener provides feedback also influences the learning results and speed. Code and data for replicating the experiments are available (https://bit.ly/interactgym) to spur future research on models for computational studies of language learning. 
    more » « less
  4. When applied to question answering and other text generation tasks, language models (LMs) may be queried generatively (by sampling answers from their output distribution) or discriminatively (by using them to score or rank a set of candidate outputs). These procedures sometimes yield very different predictions. How do we reconcile mutually incompatible scoring procedures to obtain coherent LM predictions? We introduce a new training-free, game-theoretic procedure for language model decoding. Our approach casts language model decoding as a regularized imperfect-information sequential signaling game—which we term the CONSENSUS GAME—in which a GENERATOR seeks to communicate an abstract correctness parameter using natural language sentences to a DISCRIMINATOR. We develop computational procedures for finding approximate equilibria of this game, resulting in a decoding algorithm we call EQUILIBRIUM-RANKING. Applied to a large number of tasks (including reading comprehension, commonsense reasoning, mathematical problem-solving, and dialog), EQUILIBRIUM-RANKING consistently, and sometimes substantially, improves performance over existing LM decoding procedures—on multiple benchmarks, we observe that applying EQUILIBRIUM- RANKING to LLaMA-7B outperforms the much larger LLaMA-65B and PaLM- 540B models. These results highlight the promise of game-theoretic tools for addressing fundamental challenges of truthfulness and consistency in LMs. 
    more » « less
  5. Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural language interactions between players and hidden state information. Recent work has shown that large language models (LLMs) that have access to state information can generate higher quality game turns than LLMs that use dialog history alone. However, previous work used game state information that was heuristically created and was not a true gold standard game state. We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D&D gameplay on Discord with true game state info. We recorded game play sessions of players who used the Avrae bot, which was developed to aid people in playing D&D online, capturing language, game commands and underlying game state information. We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information, improving both automated metrics and human judgments of quality. Additionally, we show that LLMs can generate executable Avrae commands, particularly after finetuning. 
    more » « less