skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 25, 2025

Title: The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces
We prove that the Novikov conjecture holds for any discrete group admitting an isometric and metrically proper action on an admissible Hilbert-Hadamard space. Admissible Hilbert-Hadamard spaces are a class of (possibly infinite-dimensional) non-positively curved metric spaces that contain dense sequences of closed convex subsets isometric to Riemannian manifolds. Examples of admissible Hilbert-Hadamard spaces include Hilbert spaces, certain simply connected and non-positively curved Riemannian-Hilbertian manifolds and infinite-dimensional symmetric spaces. Thus our main theorem can be considered as an infinite-dimensional analogue of Kasparov’s theorem on the Novikov conjecture for groups acting properly and isometrically on complete, simply connected and non-positively curved manifolds. As a consequence, we show that the Novikov conjecture holds for geometrically discrete subgroups of the group of volume preserving diffeomorphisms of a closed smooth manifold. This result is inspired by Connes’ theorem that the Novikov conjecture holds for higher signatures associated to the Gelfand-Fuchs classes of groups of diffeormorphisms.  more » « less
Award ID(s):
2000082
PAR ID:
10535733
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Geometric and functional analysis
Volume:
31
ISSN:
1016-443X
Page Range / eLocation ID:
206-267
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n -manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we showthe Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action. 
    more » « less
  2. Wei, Guofang (Ed.)
    We prove that if a closed, smooth, simply-connected 4-manifold with a circle action admits an almost non-negatively curved sequence of invariant Riemannian metrics, then it also admits a non-negatively curved Riemannian metric invariant with respect to the same action. The same is shown for torus actions of higher rank, giving a classification of closed, smooth, simply-connected 4-manifolds of almost non-negative curvature under the assumption of torus symmetry. 
    more » « less
  3. Abstract We prove that many relatively hyperbolic groups obtained by relative strict hyperbolization admit a cocompact action on a cubical complex. Under suitable assumptions on the peripheral subgroups, these groups are residually finite and even virtually special. We include some applications to the theory of manifolds, such as the construction of new non‐positively curved Riemannian manifolds with residually finite fundamental group, and the existence of non‐triangulable aspherical manifolds with virtually special fundamental group. 
    more » « less
  4. We give an if-and-only-if condition on five-point metric spaces that admit isometric embeddings into complete nonnegatively curved Riemannian manifolds. 
    more » « less
  5. We prove an obstruction at the level of rational cohomology to the existence of positively curved metrics with large symmetry rank. The symmetry rank bound is logarithmic in the dimension of the manifold. As one application, we provide evidence for a generalized conjecture of H. Hopf, which states that no symmetric space of rank at least two admits a metric with positive curvature. Other applications concern product manifolds, connected sums, and manifolds with nontrivial fundamental group. 
    more » « less