skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Classical radiation fields for scalar, electromagnetic, and gravitational waves with spacetime-symmetry breaking
An effective field theory framework is used to investigate some Lorentz-violating effects on the generation of electromagnetic and gravitational waves, complementing previous work on propagation. Specifically we find solutions to a modified, anisotropic wave equation, sourced by charge or fluid matter. We derive the radiation fields for scalars, classical electromagnetic radiation, and partial results for gravitational radiation. For gravitational waves, the results show longitudinal and breathing polarizations proportional to coefficients for spacetime-symmetry breaking.  more » « less
Award ID(s):
2308602
PAR ID:
10535759
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier Inc.
Date Published:
Journal Name:
Annals of Physics
Volume:
461
Issue:
C
ISSN:
0003-4916
Page Range / eLocation ID:
169582
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. 
    more » « less
  2. Standard sirens have been the central paradigm in gravitational-wave cosmology so far. From the gravitational wave signature of compact star binaries, it is possible to measure the luminosity distance of the source directly, and if additional information on the source redshift is provided, a measurement of the cosmological expansion can be performed. This review article discusses several methodologies that have been proposed to use gravitational waves for cosmological studies. Methods that use only gravitational-wave signals and methods that use gravitational waves in conjunction with additional observations such as electromagnetic counterparts and galaxy catalogs will be discussed. The review also discusses the most recent results on gravitational-wave cosmology, starting from the binary neutron star merger GW170817 and its electromagnetic counterpart and finishing with the population of binary black holes, observed with the third Gravitational-wave Transient Catalog GWTC–3. 
    more » « less
  3. The observation of electromagnetic radiation emitted or absorbed by matter was instrumental in revealing the quantum properties of atoms and molecules in the early XX century, and constituted a turning-point in the development of the quantum theory. Quantum mechanics changes dramatically the way radiation and matter interact, making the probability of emission and absorption of light strongly frequency dependent, as clearly manifested in atomic spectra. In this essay, we advocate that gravitational radiation can play, for the quantum aspects of black holes, a similar role as electromagnetic radiation did for atoms, and that the advent of gravitational-wave astronomy can bring this fascinating possibility to the realm of observations. 
    more » « less
  4. ABSTRACT Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for the multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations. 
    more » « less
  5. Abstract Understanding local loss processes in Earth’s radiation belts is critical to understanding their overall structure. Electromagnetic ion cyclotron waves can cause rapid loss of multi‐MeV electrons in the radiation belts. These loss effects have been observed at a range ofL* values, recently as low asL* = 3.5. Here, we present a case study of an event where a local minimum develops in multi‐MeV electron phase space density (PSD) nearL* = 3.5 and evaluate the possibility of electromagnetic ion cyclotron (EMIC) waves in contributing to the observed loss feature. Signatures of EMIC waves are shown including rapid local loss and pitch angle bite outs. Analysis of the wave power spectral density during the event shows EMIC wave occurrence at higherL* values. Using representative wave parameters, we calculate minimum resonant energies, diffusion coefficients, and simulate the evolution of electron PSD during this event. From these results, we find that O+ band EMIC waves could be contributing to the local loss feature during this event. O+ band EMIC waves are uncommon, but do occur in theseL* ranges, and therefore may be a significant driver of radiation belt dynamics under certain preconditioning of the radiation belts. 
    more » « less